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Abstract—As the number of cores increases, more master
components can simultaneously access main memory. In real-
time systems, this ongoing trend is leading to crippling pessimism
when computing the worst-case cache miss time, since a memory
request could potentially contend with other requests coming
from every other core in the system. CPU-centric scheduling
policies, therefore, are no longer sufficient to guarantee schedu-
lability without introducing unacceptable pessimism for memory-
intensive task sets. For this reason, we believe a shift is needed
towards real-time scheduling approaches that can prevent timing
interference from memory contention, while still making efficient
use of the multicore platform.

Previously, we have demonstrated the practicality of the PREM
task model, where each job consists of a sequence of phases,
some of which access memory and some of which perform
only computation on cached data. In this work, we present
the first global memory-centric scheduling policy for memory-
intensive task sets whose jobs can be modeled as a sequence
of memory-intensive (memory phase) and execution-intensive
(execution phase) phases. The proposed policy is parameterizable
based on the number of cores which are allowed to concurrently
access main memory without saturating it. Building upon results
from multicore response-time analysis, we introduce the notion of
virtual memory cores as a fundamental technique for performing
phase-based response time analysis for memory-intensive task
sets. Finally, we use synthetic task set generation to demonstrate
that proposed scheduling policy and related schedulability bound
do indeed better schedule memory-intensive task sets when
compared to state-of-art multicore scheduling.

I. INTRODUCTION

Multicore platforms are becoming increasingly popular in
modern computing systems since they have a high processing
capacity at a comparatively low cost. Shared resources on
the multicore chip, such as main memory, are increasingly
becoming a point of contention. For example, processing high
resolution images on one core, while tracking objects from
real-time vision data on another core, may cause a mutual
slowdown due to interference for access to the shared memory,
which was not a bottleneck when these tasks were run on a
single-core system.

While the real-time scheduling problem has been studied
for several decades, it has traditionally focused on scheduling
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CPU computation. One fundamental assumption is that we can
estimate Worst-Case Execution Time (WCET) for each task
when running alone in the system. However, when considering
memory-intensive applications running concurrently on a mul-
ticore chip, the measured worst-case execution times can vary
significantly, and may change depending on what is running on
the other cores on the system. In the worst case, all the cores
may simultaneously compete to access the main memory, and
the worst-case task execution time can grow linearly with the
number of cores in the system [23].

Classic multicore scheduling policies, therefore, are no
longer sufficient to guarantee schedulability without introduc-
ing unacceptable pessimism for memory-intensive task sets. In
this work, we aim at making the real-time scheduling policy
aware of memory requirements of the running task set. By
running a real-time system below its memory bandwidth sat-
uration, tasks’ WCETs are less sensitive to run-time memory
access patterns and the pessimism of schedulability analysis is
mitigated achieving higher schedulable utilization. We propose
a novel memory-centric scheduling policy, in which memory
phases are scheduled differently from execution phases: to do
this, we require additional task information on when each task
can request memory access. We leverage our earlier results
on the PRedictable Execution Model (PREM) [22], where
each task explicitly indicates regions (memory phases) of
its execution where memory will be accessed, and regions
(execution phases) of execution where computation will be
done on cached-local data. Based on this information, the
real-time scheduler promotes access to memory from different
cores in order to produce a predictable and efficient schedule.

Earlier, we have presented a memory-centric multicore
scheduling policy where memory access is granted based on
a coarse-grained Time Division Multiple Access (TDMA)
schedule [30]. This TDMA arbitration provides core isolation
for the shared memory resource, and each core can be consid-
ered as if it were given a dedicated memory resource during its
time slot. In another work [8], we used simulations to evaluate
a large set of partitioned multicore scheduling algorithms
which allowed any core to access memory at any time. In this
work, we present the first global memory-centric scheduling
policy for memory-intensive task sets whose jobs can be
modeled as a sequence of memory and execution phases.
The core idea of our approach is memory promotion, that is,
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raising the priority of memory access phases at run time. The
advantage of memory promotion is that memory accesses do
not suffer interference from the local computation (execution
phase) of any other tasks. Hence, from an analysis perspective,
memory phases and execution phases can be isolated without
interfering with each other. Compared to the prior work which
achieves isolation using TDMA, this work provides isolation
by modeling the system as composed by two different types of
resources (virtual execution cores and virtual memory cores)
and isolation is enforced by controlling the tasks’ priorities
based on what type of phase is currently running. Along
with core isolation, we also provide a parametric response
time analysis which is parameterized based on the system’s
memory bandwidth. We demonstrate the benefits of memory
promotion by generating synthetic task sets and using the
proposed response time analysis to evaluate schedulability.

This paper is organized as follows. First, Section II explains
the system and task model, validates the assumptions we make,
and reviews essential results from response time analysis
for globally-scheduled multicore systems. Section III then
introduces the rules for our proposed global memory-centric
scheduling policy. Building upon the results from multicore
response-time analysis, Section IV uses the notion of virtual
memory cores as a fundamental technique to perform phase-
based response time analysis, and a worst-case response time
is established for the proposed scheduling policy. Section V
shows the benefits of memory promotion using our response-
time bound in a simulation-based analysis. Finally, Section VI
reviews prior research related to real-time multicore schedul-
ing, and the paper concludes in Section VII.

II. SYSTEM MODEL AND BACKGROUND

We now describe the task model used for our schedulability
results and subsequent evaluation (Section II-A). This task
model is justified as applicable to scheduling real-time multi-
core systems built using currently-available hardware (Section
II-B). Then, we review key response-time analysis results for
multicore real-time systems, which will be built upon in our
later analysis (Section II-C).

A. Task Model

In this work, we use a task model where each job is broken
down into two types of phases. The first type of phase is a
memory phase, where the CPU can perform main memory
reads and writes. The second type of phase is a execution
phase, where the CPU performs computation on already-
cached data and does not access main memory. The practicality
of this task model will be justified in the next subsection.

Tasks perform standard, non-DMA memory access; when
a task is accessing memory, the core is occupied by this task
and cannot do other computation. Furthermore, each individual
task must be executed serially and cannot be run in parallel
on multiple cores.

In this paper, we consider global CPU scheduling. The
global scheduler maintains a pool of tasks which are ready
to be executed, which can be run on any core. The system
consists of a multi-core chip with mcore identical cores.

Memory is a global shared resource, and can be accessed by
any of the cores. However, if all the cores were allowed to
access memory at same time, the interference would cause
a slowdown for all tasks accessing memory [23]. Avoiding
this interference and its effects on schedulability is the main
justification for the proposed scheduling algorithm in this
paper. In order to prevent memory interference, we limit
the number of cores which can concurrently access memory
without timing interference to mmemo. As long as mmemo

or fewer cores access memory at the same time, memory
bandwidth is not saturated and timing interference due to
memory contention is negligible.

We use a fully preemptive scheduler, such that a task can
be preempted at any time and resume execution afterwards.
A mechanism needs to be in place which can guarantee that
memory prefetched during a memory phase is not evicted from
the last level cache, either by the same task (self-eviction),
other tasks running on the same core (intracore eviction), or
tasks on other cores which access the shared cache (intercore
eviction). Existing mechanisms for achieving this are described
in the next subsection. Additionally, cached memory needs
to be accessible from any core (to permit migration), which
implies a shared last-level cache. Many current-generation
multicore chips have a shared last-level cache.

Formally, our focus in this paper is the scheduling policy
and the corresponding response time analysis for a set of n
periodic tasks T = τ1, . . . , τn, each of which is modeled as
(Ti, Ci) in accordance with the classical Liu and Layland
model [18]. The two tuple (Ti, Ci) represents the period
and worst-case execution time of each task respectively, and
each task has its relative deadline Di equal to its period.
We consider a fixed priority global scheduling approach,
where each task is assigned a fixed priority according to Rate
Monotonic [18] with τ1 being the highest priority. We denote
the subset of tasks with priority higher than task τi as hp(i).

In this work, to simplify the analysis we make further
assumptions about the task structure. Rather than allowing an
arbitrary number of phases (memory / execution) per task, we
instead have each job consisting of exactly three phases. Each
task instance starts and ends with one memory phase and there
is one execution phase between these two memory phases.
Intuitively, this allows a job to fetch memory during its first
phase, perform execution during its second phase, and write
back its results to memory during its third phase. We index
the memory and execution phases separately starting from 0:
the first and the last memory phases are m0 and m1 and the
execution phase in the middle is e0. We will refer to these
phases as m0, e0 and m1. Since we will not allow more than
mmemo cores to access memory at a time, the duration of the
memory phases does not depend on the number of other cores
concurrently accessing memory. Hence, the task’s worst case
execution time C is equal to the sum of these three phases,
C = m0 + e0 + m1. We will relax the assumption on the
number of phases in future work and for now we focus on the
3-phase task model.

For the sake of simplicity, we do not consider now in-
terference from peripheral access in this work, although the
scheduling method and analysis can be easily integrated with
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Fig. 1. Observed performance slowdowns on P4080 and Intel Xeon platforms.
Each task accesses different banks in DiffBank while all tasks access the same
bank in SameBank

our earlier work on I/O scheduling [7], [22].

B. Task Model Justification

A task model where each job consists of phases which
perform memory access and phases which work on locally
cached data was first proposed as part of our earlier work
on the Predictable Execution Model (PREM) [22]. In this
work, embedded benchmarks were modified in order to be
made PREM-compliant, without significantly increasing total
memory accesses time or total execution time. Since we target
commercially-available platforms, we assume a cache-based
system where the core fetches required instruction and data for
the task from main memory into last level cache. While some
embedded platforms [12] provide a cache-stashing mechanism
that allows memory transfers performed by a separate DMA
component to be optionally loaded into cache, such mechanism
is not widely available nor generally guaranteed to succeed;
hence, we do not employ it in this work.

In previous work on memory-access scheduling and multi-
core scheduling for PREM-compliant tasks, only one core was
allowed to access main memory at a time (mmemo =1) [22],
[30]. However, this often turns out to be overly pessimistic be-
cause in reality there is significant memory-level parallelism.
To illustrate this, we performed experiments on two multicore
platforms using an engineered synthetic task that only accesses
a selected memory bank. Figure 1 shows the performance
slowdown of the mentioned task while varying the number
of interfering tasks (each core runs a single instance of the
synthetic task) on the two multicore platforms in two different

settings: SameBank and DiffBank. For DiffBank, each task
accesses its own memory bank and experiences almost no
slowdown even as the number of interfering cores increases.
For SameBank, which represents the worst-case scenario, all
tasks access the same memory bank (namely bank 0) and the
observed task suffers significant interference as the number of
cores increases. Even in this worst-case scenario, however, the
P4080 platform offers a certain degree of memory parallelism,
while less so in the case of the Xeon platform.

The mmemo variable is introduced to account for such
memory level parallelism into the analysis framework. As
technology develops, and depending on the specific platform
and the tasks used, the value of mmemo may be varied, so we
perform a parameterized response time analysis. To precisely
measure the parallelism of system memory capacity involves
other works, for example, the assignment of tasks to memory
banks, which is not the main focus of this work. Finally, our
model, of course, is compatible with research work which
assumes memory as being a single resource by setting mmemo

=1.
A mechanism is needed to prevent the above-described

problems of self-eviction, intracore eviction, and intercore
eviction. The simplest approach is to partition the cache for
each task. Better, colored cache lockdown, which is supported
by many embedded processors, permits individual pages of
memory to be placed in the last-level cache and locked, so that
they can not be evicted until they are explicitly unlocked [19].
One potential problem with these approaches is the limited
cache space. Recently, it was presented how to identify and
lock in cache only the hot pages of each task [19], and use
analysis to bound the effects of memory interference for non-
locked pages.

In our analysis, we assume the length of each phase,
m0, e1 and m1, is an enforced constant. This can be done in
implementation, for example, by implementing busy waiting
at the end of a phase if execution proceeds faster than the
worst case [22]. This modification will not degrade worst-
case response time, but it may actually improve the scheduling
bound. For example, consider a two-cores, two-tasks system
(one task running on each core) where mmemo =1 and memory
access is prioritized. A shorter-than-expected execution phase
from the higher priority task will cause more memory access
by the higher priority task in a given time window, which in
turn can make a lower priority task have to wait longer before
it can access memory (degrading its response time). If the
execution phase time of the higher priority task is enforced
as constant, however, the lower priority task will be able to
get memory access while the higher priority task’s execution
phase is executing.

C. Summary of Response Time Analysis for Global Multicore
Scheduling

While response time analysis [6] has been around for
the single core systems for a long time, only recently this
technique has been applied to the multi-core case [9], [10],
[13], [16]. The formula for the multi-core case is expressed in
the following lemma.
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Lemma 1. (Theorem 7 in [10]) An upper bound of the
response time of a task τk in a multi-core system scheduled
with global fixed priority can be derived by the fixed point
iteration on Rk on the following expression, starting with
Rk = Ck:

Rx+1
k = Ck +

 1

m

∑
τj∈hp(k)

min{Ijk(R
x
k), R

x
k − Ck + 1}


(1)

where m is the number of cores and Ijk(R
x
k) is the upper

bound of interference from task τj on time window Rxk .

Observation 1. When computing task response time, the sum
of interference is divided by the number of cores, as all cores
can execute in parallel. This is one main difference compared
to the single core case, as we will show our scheduling
analysis in next section, we will change this number depending
on the execution or memory phase.

Observation 2. Computing the interference from one task in
a specific time window is in general intractable and hence, we
compute the workload, denoted by W (L), this task can gen-
erate during this window as the upper bound of interference.
Workload captures the amount of execution that can occur in a
fixed window of time and clearly it holds that: Iik(x) ≤Wi(x).

Computing the workload is based on three terms: carry-in,
body and carry-out. A carry-in job has its arrival time before
the considered time window and its deadline within the time
window. A carry-out job has its arrival time within the window
but its deadline is outside the window. Body jobs have both an
arrival time and deadline within the considered time window.
To compute a workload upper bound, the computation has the
carry-in job arriving as late as possible and the carry-out job
as early as possible. This is shown in Fig.2. Here, two cases
are shown, one where the time window L = 6, and one where
the time window L = 1. The first job finishes just before its
worst case response time and the second job starts execution
right on arrival. The slack of this task, which is the amount
of time the task could be delayed without causing a deadline
miss, is denoted as s. For example in Fig.2, the first instance
of task has slack 1, meaning that it can be delayed at most 1
time unit before missing the deadline.

The workload from task τi during time window L is upper
bounded by the following equation (Eqn.(8) in [10]):

Wi(L) = Ni(L)∗Ci+min{Ci, L+Di−s−Ci−Ni(L)∗Ti}.
(2)

where Ni(L) is the count of carry-in and body jobs. It can be
calculated as (Eqn.(3) in [10] and Eqn.(5) in [16]):

Ni(L) =

⌊
L+Di − s− Ci

Ti

⌋
. (3)

For example, consider again the example task showed in
Fig.2. The task has its relative deadline D equal to the period
T = 5, its worst case execution time C = 2 and the slack
s = 1. In first case, we are trying to compute the workload
with a time window of length L = 6. The carry-in includes

L=6 

T-s-C=2 S=1 

5 10 0 

 Case (i) when N(L) > 0 

L=1 

 Case (ii) when N(L) = 0 

Fig. 2. The computation of the workload for two time windows of different
lengths L for one task. There are two different cases depending on the value
of N(L), as in Eqn.(3)

one whole job and Ni(L) =
⌊
6+5−1−2

5

⌋
= 1. Hence, the

workload generated by this task during this time window can
be computed as Wi(L) = 2+min{2, 6+ 5− 1− 2− 5} = 4,
which is exactly showed in the figure. The interference from
this task, then, can be upper bounded by the computed
workload.

Now we introduce one minor improvement on the traditional
computation of workload. Consider this same example task in
Fig.2, assume the time window is short and Ni(L) is equal
to 0. For example, as in case (ii) in the figure, when L = 1
and Ni(L) = 0, the workload is upper bounded by 1, while
Eqn.(2) would yield the result of min{2, 1 + 5− 1− 2} = 2.

The key observation in the computing of workload is that
Ni(L) = 0 should be considered a special case and it is
different from the Eqn.(2). When Ni(L) = 0, the time window
ends within the task period and it does not stretch out into the
next period. Therefore, we can directly use the minimum of
this time window length and the task execution time as the
workload.

Based on this, we use the following equation to calculate
the workload in the rest of the paper.

Wi(L) =

{
min{Ci, L} if Ni(L) = 0

Eqn.(2) otherwise (4)

III. THE GLOBAL MEMORY-CENTRIC SCHEDULING
POLICY

In this section, we introduce a global memory-centric
scheduling policy and illustrate it with an example task set.
We will elaborate on the motivation, the rules and the effects
of the proposed approach. In the next section we will consider
its schedulability bound.

Traditional real-time scheduling methods focus on CPU
scheduling, and do not consider memory access. As the
number of cores increases, the effects of the comparatively
limited memory bandwidth will increasingly become apparent
in real-time systems. The proposed scheduler, therefore, takes
memory access into account when deciding which task to
execute.

We now list the three rules of the proposed global memory-
centric scheduling approach:
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1) In order to prevent slowdowns due to memory
interference, a maximum of mmemo cores are allowed
to access memory at the same time. If there are more
than mmemo tasks ready to execute a memory phase,
the lower priority ones are blocked and do not execute.

2) Priority of memory phases is promoted over execution
phases. Tasks which are executing memory phases
dynamically have their priority increased above
all tasks not accessing memory. Relative priorities
among tasks running memory phases are maintained.
Therefore, a task with a pending memory phase will
always preempt any running task which is in an
execution phase, except in cases when this would
conflict with the first rule.

3) Tasks priorities are assigned according to task periods
(rate monotonic). Tasks with shorter periods are given
higher system priority and will therefore always execute
ahead of all pending tasks with longer periods, except in
cases when this would conflict with the first or second
rule.

Given these three rules, when a task needs to start a memory
phase, there are several possible outcomes depending on the
state of currently-running tasks. In the first case, if all the
cores are busy running other tasks but the memory is not
fully loaded (the number of tasks running memory phases is
less than the memory capacity mmemo), the memory phase
starts immediately by preempting the lowest active execution
phase across all cores. This is because, according to rule 2,
a memory phase runtime priority is always higher than any
execution phase. In the second case, if memory is fully loaded
and the priority of the pending memory phase is higher than
the lowest priority of one of the running memory phases, the
task will preempt the lowest priority memory phase. Notice
the number of running memory phases is bounded by mmemo

in accordance with rule 1. In the third case, if the memory is
not fully loaded and one or more cores are idle, the memory
phase can start immediately on one of the idle cores. In all
other cases, the current memory phase cannot execute and the
task is blocked.

Our proposed memory-centric scheduling policy leads to
an important property at runtime: the isolation of memory
and execution phases. Since all memory phases have higher
priority than execution phases, free memory resources are
always available for memory phases, if there are any active
ones. All memory phases can therefore be considered as if they
were running on one of mmemo virtual memory cores, without
being interfered by the execution phases. Likewise, there
are always mcore- mmemo virtual execution cores available
to exclusively run execution phases. This key realization is
illustrated in the following example, and it is the cornerstone
of the schedulability analysis in the next section.

Another note about our proposed memory-centric schedul-
ing is that this method is targeting memory intensive appli-
cations: by promoting the memory access and isolating the
memory access and local execution, we can better bound the
task stall time due to memory contention and estimate the

Memo 

Exec 

5 10 0 

(a) The traditional scheduler based on task priority   

(b) The memory centric scheduler which prioritizes memory  access 
5 10 0 

Memo 

Exec 

𝜏1 
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𝜏3 

𝜏4 

𝜏5 

𝜏1 

𝜏2 

𝜏3 

𝜏4 

𝜏5 

(c) The memory centric scheduler from the virtual core point of view  
5 10 0 
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Memo 𝜏1 𝜏1 
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𝜏3 
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𝜏5 𝜏5 𝜏5 

15 

15 

15 

Fig. 3. A scheduling trace for five tasks on a system with 3 cores (mcore =
3) and memory capacity 1 (mmemo = 1). Compared to an approach without
memory promotion (without rule 2, shown in (a)), our proposed memory-
centric policy (shown in (b) increases the parallelism of the system and reduces
the task set response time. The trace in (c) shows the same schedule trace as
in (b), but from the view of the virtual memory core and virtual execution
cores. The traditional scheduler in (a) represents the one that does not arbitrate
access to memory, but suffers the effects of bus contention.

worst-case response time. When the system memory load is
low, our method loses its main benefits as the virtual memory
cores are under utilized and wasted. This will be better shown
in the evaluation section.

A concrete task set example is presented to better explain
the rules of our proposed memory-centric scheduling. Fig.3
depicts a set of five tasks which are released at time 0, each
row in the figure shows the trace of a single task. Here, we
show each task with starting and end memory phase length 1
(m0 = m1 = 1) and an execution phase length between 1 to
4. We assume that the system consists of three cores (mcore

= 3) so that at any time instance there are at most three tasks
running concurrently. We further assume the system memory
capacity is 1 core’s memory bandwidth (mmemo = 1), hence,
only one task can access memory at a time. The tasks are
assigned global priority with task 1 having the highest priority.
In Fig.3(a) and (b), each line represents the execution progress
of each task: we do not show the trace for each core but
only limit the number of concurrently running tasks. Fig.3(c)
shows the same trace as in (b), but we group the execution
and memory phases from all tasks.

Rule 1 limits the number of concurrent cores which can ac-
cess memory. It is imposed by the architecture and is necessary
to prevent a slowdown due to memory interference. Rule 3,
priority assignment from task rates, is the standard global RM
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scheduling rule. We therefore more closely examine Rule 2,
which promotes memory phases above execution phases. The
effects of this rule can be seen by comparing the trace without
rule 2 in Fig.3(a) with the trace using rule 2 in Fig.3(b).

Observation 3. Without memory promotion (rule 2), we may
not fully utilize the parallelism of the hardware system and
this results in a long response time.

In Fig.3(a), task 4 can start only after the three higher
priority tasks finish, and since one task cannot run in parallel
on more than one core, during the time window [5, 9], only a
single core is actively running. This leads to a long response
time for task 5. The underlying reasoning is that the memory
phase is delayed by both the memory and execution phases
of higher priority tasks. In turn, this memory phase delays its
subsequent execution phase.

Observation 4. Memory promotion makes the memory phase
finish earlier and increases the system parallelism.

In Fig.3(b), at time 3, the memory phase of task 4 starts by
preempting the execution phase of task 3 (the lowest priority
at that time among the 3 active tasks). Similarly, task 5 at
time 4 preempts the execution phase of task 4. This makes
the memory phases of these two tasks finish earlier compared
to the case without memory promotion in Fig.3(a).

Observation 5. Memory-centric scheduling provides isolation
between memory accesses and local computation.

Here isolation means that memory phases are not subjected
to interference from execution phases. As shown in Fig.3(b),
from time 0 to time 9, the memory is continuously utilized.
We can consider the memory resource as mmemo virtual cores
even though in reality the memory phases are running phys-
ically on different cores. The memory phases are scheduled
on this virtual core according to their priority level. Fig.3(c)
provides a per-virtual-core based view of the same trace as
in (b). Since memory can only be accessed by one core at
the time (mmemo =1), the memory phases can be considered
as running on this virtual memory core, while the remaining
execution phases are running on the two virtual execution
cores (mcore-mmemo =2). This provides the basic idea for
the proposed schedulability analysis which will be detailed in
the next section. Notice that considering having only mcore-
mmemo =2 virtual cores which run execution phases can be
pessimistic; in fact, if no memory phases are executing, up to
mcore cores could concurrently run execution phases.

Observation 6. Under certain conditions, memory promotion
can improve task response time.

Since the memory phase of a low priority task is promoted
above the execution phase of any other tasks, after it finishes
the subsequent execution phase can take advantage of the
system parallelism and run concurrently with the execution
phase of other tasks. This is what exactly happened in Fig.3(b):
the first memory phases of task 4 and task 5 preempt the
execution phase of task 3. At time 5 after these two memory
phases finish, the execution phases of task 4 and task 5 can
run concurrently with task 3, reducing the task set response

time.

Observation 7. The virtual memory core can be idle even
though there are unfinished but not ready memory phases.

This case happens in Fig.3(c) when the memory core is
suspended during time [9, 10], even though task τ5 still has an
unfinished memory phase. This is because there are precedence
constraints between memory phases and execution phases; in
fact, the memory phase can start only after the completion of
the preceding execution phase. This imposes new challenges
in the response time analysis for the memory cores: we cannot
compute the delay from memory phases by simply summing
up the length of memory phases and performing standard
response time analysis. We will elaborate on this in the next
section.

IV. THE SCHEDULABILITY ANALYSIS

Having introduced the memory-centric scheduling policy,
we provide the corresponding schedulability analysis in this
section. We will first give an overview of the methodology
and break down the analysis into two main problems, then we
will introduce the solution to both of them in detail.

A. Methodology overview
As consequence of memory promotion, all memory phases

can be considered as if they were running on mmemo virtual
memory cores, and in the worst case, the execution phases
can run only on the remaining mcore-mmemo cores. Although
analyzing the system like this will be pessimistic in terms
of the amount of execution that can occur in the system, the
motivation for this work is that memory is increasingly be-
coming the bottleneck in multicore real-time systems, whereas
execution is continuing to scale up according to Moore’s
law. Each task is composed of a sequence of alternating
memory and execution phases, hence, we can apply the
global response time analysis on these mmemo and mcore-
mmemo cores separately to compute the response time of one
memory/execution phase. However, existing CPU-only global
response time analysis cannot be directly applied here, as each
task consists of two different type of requests which interfere
in different ways. First, from the interfering task point of view,
interference can only be caused when its phase type matches
the phase type of the task under analysis. Secondly, from
the point of view of analyzed task, even though computing
the response time of one phase is possible by exploiting
memory/execution isolation, the job response time is usually
less than the sum of each phase response time, and to get a
tighter bound we must take some combination of these phases
response times. These challenges can be summarized in the
following two questions which will, in turn, be addressed in
the next two subsections.
• Given an interfering task and a fixed interval of time, how

can we compute the maximum interference (workload on
memory or execution) generated by this task?

• Given the computed workload from interfering tasks and
the response time of the phases, how can we compute
a task response time that is tighter than a direct sum of
phase response times?
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Fig. 4. The calculation of memory workload from one task during a time
window of a certain length requires iteration on its phases.

B. The workload during a length of time

In this subsection, we will first consider the memory work-
load, and then address execution phase interference. Our goal
is to, given a fixed interval of time L, provide functions
Wm(L) and We(L) which compute the maximum memory
workload and maximum execution workload, respectively.
Since these functions are defined per task, we compute them
with respect to an arbitrary task with phases m0, e0 and m1,
task period T and computation time C.

In order to get the maximum memory workload generated
by a task in a given period of time, we assume a worst-case
task arrival pattern [10], where the carry-in job (the job that
straddles the start of the interval of time) finishes as late as
possible and the carry-out job (the job that straddles the end
of the interval of time) starts as early as possible. This can be
imagined as pushing the two end tasks toward the center in
order to maximize the amount of memory access in the time
window being considered. In this way, more memory phases
occur during the time window, and therefore the interference
is maximized.

Each interfering task instance has two memory phases. The
maximal memory workload can be obtained by aligning the
start of the time window with the start of either one of the
two interfering memory phases. We therefore compute the
workload for each of these two cases and take the maximum
to get an the upper bound on possible interference.

When aligning the time window with the start of a memory
phase, the carry-in job memory workload is the sum of
memory phases starting from this phase to the end of this
task instance. The body jobs, if any, contribute both of their
memory phases to the workload being computed. Finally, the
carry-out job contributes to the memory load from its first
memory phase until the end of the time window. In order to
compute the memory workload of the carry-out job, we define
a function Fm : R→ R, which takes as input the time window
of length t starting from the task beginning, and outputs the
total memory load during this time window. This function,
with respect to our sample task with phases m0, e0 and m1,

and can be expressed as follows:

Fm(t) =


t if t ≤ m0

m0 if m0 < t ≤ m0 + e0
t− e0 if m0 + e0 < t ≤ C
m0 +m1 if C < t ≤ T

(5)

Figure 4(a) shows an example of this function Fm(t). The
x-axis is the length of the time interval and the y-axis is the
maximal memory request generated during the time interval.
With the function Fm(t), we can formalize the memory
workload in a way similar to Eqn.(4).

For the case where the window is aligned with the start
of the second memory phase, the workload generated by the
sample task during a period of time L is:

wm(L) =

{
min{m1, L}; if N(L) = 0
m1 + (N(L)− 1) ∗ (m0 +m1) + Fm(lco); else

(6)
where N(L), the number of carry-in and body jobs in an

interval of time L for our sample task, is computed similar to
Eqn.(3)

N(L) = bL+ T − s−m1

T
c,

and lco is the Length within the Carry-Out job:

lco = L+ T − s−m1 −N(L) ∗ T.

When N(L) is 0, the time window finishes within the first
task instance, and the memory workload is no larger than m1

or L (the first part of Eqn.(6)). Otherwise, the carry-in job
contributes m1, the N(L)− 1 body jobs contribute m0 +m1

each, and the final carry-out portion is computed using the Fm
function.

For the other case, when the time window is aligned with
the start of the first memory phase, the memory workload can
be computed as:

w′m(L) =

{
Fm(L); if N(L) = 0
N(L) ∗ (m0 +m1) + Fm(lco); else (7)

where the number of carry-in and body jobs N(L) is

N(L) = bL+ T − s− C
T

c,

and lco is

lco = L+ T − s− C −N(L) ∗ T.

Finally, the resultant memory workload during a period of
time L, is computed by taking the maximum of two previously
computed workloads:

Wm(L) = max (wm(L), w′m(L)) (8)

An example of computing the memory workload is shown
in Fig.4. As mentioned before, Fig.4(a) depicts the Fm(t)
function for the 3-phase task. This function increases when
the end of time window falls inside a memory phase, either
m0 or m1, and it remains constant when it is inside the
execution phase, as this does not contribute to the memory
workload. Fig.4(b) shows that the workload is computed for
two different alignment cases. In case (i), the time window is
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aligned with the start of second memory phase and the total
memory workload is m0+2∗m1. In case (ii) the workload is
2 ∗m0 +m1. Since in general we cannot assume the specific
arrival pattern of the interfering tasks, the final result for
memory workload would be the maximum of these two values.

The calculation of execution workload can be done in a
similar way. In our 3 phases task model, there is only one
alignment situation, and the workload is expressed as:

We(L) =

{
Fe(L); if N(L) = 0
N(L) ∗ e0 + Fe(lco); else (9)

where the number of carry-in and body jobs N(L) is

N(L) = bL+ T − s− C +m0

T
c,

and lco is

lco = L+ T − s− C +m0 −N(L) ∗ T.

and function Fe(x) is similar to Fm(x) but computes the
workload based on the execution phase length. The function
Fe(x) can be formalized as

Fe(t) =

 0 if t ≤ m0

t−m0 if m0 < t ≤ m0 + e0
e0 if m0 + e0 < t ≤ T

(10)

C. Improving task response time

Having shown how to compute the upper bound on memory
and execution phase workloads, we can proceed to compute
the response time for a single phase using the method in
Eqn.(1). Since a job is composed of a sequence of phases,
and one phase can start only after the previous one finishes,
one simple way to compute a bound on job response time is
by summing up the response time of each phase.

Consider computing the response time of a memory phase
m of task τk. Its worst case response time, denoted as Rm(m),
can be computed as the fixed point iteration on the following
equation:

Rx+1
m = m+

 1

mmemo

∑
τj∈hp(k)

min{Wm(Rxm), Rxm −m+ 1}


where Wm is computed using Eqn.(8).
Notice here the total interference is divided by mmemo, the

number of virtual memory cores.
Likewise, the response time of the execution phase e,

denoted as Re(e), can be computed by the fixed point iteration:

Rx+1
e = e+

 1

mexe

∑
τj∈hp(k)

min{We(R
x
e ), R

x
e − e+ 1}


where the number of available cores for execution mexe =

mcore - mmemo .
As mentioned before, one simple way to calculate the

response time of 3 phases task, denoted as Rτk , is to sum up
the response time of each phase: Rm(m0)+Re(e0)+Rm(m1).

However, the result of this computation may be unneces-
sarily pessimistic. This is because this bound accounts for
the worst-case interference pattern for each phase individually,

whereas during execution all three worst-cases may not be able
to occur at the same time. To try to improve the computed
response time, we consider combining phases and computing
the response time as one merged memory phase. Since both
of these approaches are valid bounds, we take the minimum
of this bound, and the direct summation bound.

In order to consider the whole job as a single memory
phase, we need to decide what is its equivalent memory access
time. After the completion of the first memory phase (m0),
the second memory phase can be delayed in the worst case
as much as the response time of e0, which can be computed
as Re(e0). The equivalent memory length of merged phase,
therefore, is equal to m0 +Re(e0) +m1.

Fig.5 illustrates one example of this. The top line shows
the mcore-mmemo cores serving the execution phase and the
bottom line is for the mmemo virtual memory cores. Here, the
task execution and the corresponding interference are clustered
in one box to simplify the figure; in reality they may happen at
different time instances. The interference is represented using
a higher box compared to the task execution as it may use all
the mmemo and mcore virtual cores, while the task execution
and memory access cannot be parallelized. This figure exactly
captures the task worst-case response time, similar to the
one shown in [10]. The difference here, which is brought on
because we having different phases, is that the second memory
phase has to wait for the completion of the preceding execution
phase. The combined memory phase, therefore, is scheduled
as if it had a memory phase time of m0 + Re(e0) + m1.
By applying the memory phase response time analysis on
this equivalent merged memory phase, the worst-case response
time can be computed as : Rm(m0 +Re(e0) +m1).

Finally, since the task response time cannot be larger than
either of these two cases, we use the minimal of these two
results as the upper bound of task response time. Putting these
two together, task response time Rτ can be computed as

Rτ = min{Rm(m0) +Re(e0) +Rm(m1),

Rm
(
m0 +Re(e0) +m1

)
}.

(11)

Intuitively, if the execution phase between these two mem-
ory phases is small, adding its response time into the memory
phase length would compensate the pessimism brought on by
computing the worst-case memory workload twice, and we
expect the second term of the minimum to be smaller. On
the other hand, if the execution phase is much larger than the
memory phase, simply summing up the response times of all
three phases may be a better option, and the first term of the
minimum would probably be smaller.

D. Method summary and considerations

The entire procedure to perform schedulability analysis can
be summarized as follows:

1) We perform the analysis in the global priority order.
Hence, the slack information of higher priority tasks is
available when we consider each task.

2) For each task under analysis, we first compute the
response time of each individual phase, and then we
compute the response time when the whole task is
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Fig. 5. The computation of the task response time using the merged phase
method. The task response time can be computed as the memory response
time of a memory phase of length m0 +Re(e0) +m1.

considered as one merged memory phase. The task
response time is obtained by taking the minimum of
these two, as in Eqn.(11).

3) We can terminate the procedure once we find a task that
is unschedulable. Otherwise, we update the task slack
information and move on to the next task.

Our method considers the memory as multi-unit resource
by using the variable mmemo to control the level of memory
parallelism. It is also backward compatible to the previous
research work which assumes the memory is an exclusive
resource. This is achieved by setting mmemo =1. From the
schedulability analysis point of view, as pointed out in [9],
multicore response time analysis is also compatible with the
single core case. Hence, our analysis method would still hold
when setting mmemo =1.

Although we have presented the framework in terms of the
three phases task model, it is worth examining what needs
to be changed to allow for an arbitrary number of phases per
job. With multiple phases, the key difference is that computing
the workload from higher priority tasks needs to examine all
possible alignments. The challenge with this is that there are
many different possible phase combinations of higher-priority
tasks, and a brute force algorithm may lead to exponential
complexity. We are currently examining ways to address this
problem by employing a dynamic programming approach
that can re-use previously computed phase alignments, which
has polynomial complexity. The main target of this work
is to propose a new memory-centric scheduling policy and
provide the corresponding analysis; the dynamic programming
approach and its analysis on the multiple phases task model
will be provided as part of our future work.

V. EVALUATION

This section presents analytic evaluation results of the
proposed memory-centric scheduling algorithm, denoted as
MemCentric, using a set of generated synthetic workloads.
For comparison, we also use a baseline scheduling algorithm,
denoted as Baseline, that schedules tasks based on their static
priorities without prioritizing memory phases over execution
phases, as presented in [10]. Baseline differs from [10] in that
tasks follow the PREM task model and only mmemo cores
can access memory at any time instance. According to a more
realistic model than one described in [10], the tasks suffer

the effects of bus contention and in the worst case, when
all mcore cores try to access memory at the same time, each
memory access time can be increased by mcore/mmemo times.
Therefore, under worst-case scenario, task execution time is
increased to

mcore

mmemo
∗ (m0 +m1) + e0. (12)

We perform the analysis as in [10] with this increased
task execution time and use this result as Baseline for the
comparison.

In generating task sets, we control two parameters: the av-
erage core utilization and the average memory utilization. The
average core utilization is defined as the sum of each task’s
core utilization, which is computed as the task’s computation
time (including all memory and execution phases) divided
by the task’s period and the number of cores. Likewise, the
average memory utilization is the sum of each task’s memory
utilization, which is the task’s memory phases divided by the
period and the memory capacity mmemo. Intuitively, these two
utilization values measure overall computational and memory
loads (the utilization value of one means fully loaded system).

We model a 8-core platform with the memory capacity of
two: i.e., mcore =8 and mmemo =2. We vary the average
core and memory utilization within the range of [10%, 60%].
The number of tasks is varied in the range of [8,24]; and for
each task, the period is chosen in the range of [5000, 50000].
For a chosen overall computation and memory utilization pair
[Ucore, Umemo], we randomly assign per-task computation and
memory utilization values in the range of [Ucore/3, Ucore] and
[Umemo/12, Umemo/4], respectively. For the chosen utilization
and period values of each task, we calculate lengths of the
task’s execution phase e0 and split the memory into m0 and
m1 such that the ratio difference between these two is less
than 1.5. Finally, each task is assigned a relative deadline
equal to its period and a priority according to Rate Monotonic
scheduling algorithm.

Figure 6 shows the schedulability level achieved by Mem-
Centric (left) and Baseline (right). In this experiment, we
randomly generate one hundred thousand task sets, evenly
distributed in the two-dimensional space of core utilization
(Y-axis) and memory utilization (X-axis). The Z-axis shows
the percentage of schedulable task sets. As observed in the
figure, when average core and memory utilization level are
low, both MemCentric and Baseline can achieve a very high
schedulability level; and as the core or memory utilization
increases, the schedulability level gradually drops to zero. One
clear advantage of MemCentric compared to Baseline is that
MemCentric is much less sensitive with respect to memory
utilization: the schedulability decreases much slower when
memory utilization increases. This is because our proposed
method promotes memory access and has them scheduled on
the dedicated memory cores; therefore, their impact to the
schedulability level is small as long as they are not saturated.
Overall, out of the 100 thousands randomly generated tasksets
in this simulation, 56.3% of tasksets can be scheduled in
MemCentric while only 38.3% can be scheduled in Baseline.

To better understand the difference between the two method-
s, Figure 7 shows a contour line at the 50% schedulability level
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Fig. 6. In an 8-core system with memory capacity 2, memory-centric scheduling outperforms baseline scheduling.

Fig. 7. The 50% schedulable utilization boundaries such that taskset
generated with two utilizations on that curve has half chance to be schedulable.
The curves Baseline and MemoryCentric is derived from Fig 6, the Baseline-
50 and Baseline-75 are for different slowdown factors

of Figure 6. This can be better understood by imagining an
intersection between a horizontal plane at 50% schedulability
ratio level and the plotted three dimensional shape. In the
intersection line, each point corresponds to the pair of memory
and core utilizations, under which the ratio of schedulable
tasksets is 50%; and the taskset generated with utilization pair
in the area below the intersection line will have schedulability
level larger than 50%. We also include two other contour
lines, Baseline-75 and Baseline-50, which will be explained
in the next paragraph. As shown in the figure, MemCentric
covers a larger area compared to Baseline. At 50% memory
utilization, for example, MemCentric can schedule twice more
task sets, extending the core utilization from 18% to 35%.
This means that when the memory load is high, MemCentric
performs better by promoting the priority of memory phases

so that it would not be interfered by the execution phases.
Note, however, that two curves intersect around the memory
utilization level of 20%; the Baseline performs better below
this memory utilization. This is because of the pessimism in
our MemCentric analysis: it assumes the execution phases are
only executed on the mcore-mmemo virtual cores, even though
the memory load is low. Since we are more interested in the
cases when memory load is high, we believe this is not a
serious problem.

As shown in Section II-B, the slowdown of memory access
due to interference may vary depending on many factors,
including the underlying hardware architecture. Considering
this fact, simply increasing the memory phase time by a factor
of mcore

mmemo
can become inaccurate in calculating the Baseline.

To cope with this, we reproduce the figure with same con-
figurations but with different slowdown factors: Baseline-75
represents the situation when the memory phases are slowed
down by 0.75 ∗ mcore

mmemo
and Baseline-50 as 0.5. This work is

by no means to derive a precise slowdown factor, rather, we
are motivated by the fact that task may suffer different level of
slowdown and we are interested in gauging the schedulability
impact on Baseline. We examine the slowdown factor in the
range of [0.5, 1] and we believe this will provide some
insights to estimate the schedulability impact. It is also worth
mentioning that our proposed MemCentric is not affected
the memory slowdown factor as it schedules memory phases
according to their relative priorities on the dedicated memory
cores.

As expected, when the memory phase is slowed down by a
smaller factor, the schedulability bound provided by Baseline
improves as it covers a larger area. The slope of Baseline
curve also changes: when the memory slowdown is less severe
(with smaller slowdown factor), Baseline can achieve the
same schedulabilty level at a higher memory load. Comparing
the set of Baseline curve with MemCentric, Baseline-75 and
MemCentric still intersect, and this intersection point is 10%
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higher memory utilization level and slightly smaller core
utilization level, compared to the intersection point of Baseline
and MemCentric. Also notice Baseline-75 and MemCentric
cover similar size of area, and MemCentric has some marginal
benefits only when at high memory load. When the scaling
factor is 0.5, Baseline-50 always outperforms MemCentric,
and this suggests that when the memory slow down is not
severe, using a traditional algorithm may work better.

VI. RELATED WORK

Schedulability analysis for multicore systems has been
studied by many researchers. Bertogna et al. extended single-
core response time analysis [6] to multicore, using the idea of
carry-in and carry-out to upper-bound interference [10]. This
approach has been further extended in several directions: for
example, the non-preemptive case [14], [17] and the arbitrary
deadline case [13]. Recently, Lee and Shin extended it to
limited preemptive scheduling on multi-core systems [16]. Our
analysis uses a similar idea to calculate the task response time,
but is different in that it considers not only CPU but also
memory in the analysis.

There are several existing timing analysis methods targeting
contention on shared memory or bus under various access
models [5], [23], [26]–[28]. Rosen et al. proposed a method to
obtain efficient TDMA arbitration policies [24]. Our previous
work [30] is also based on TDMA; tasks are statically parti-
tioned to cores and each core is allowed to access memory only
during its granted TDMA slot. In contrast, our current work is
based on a global preemptive scheduler and tasks are modeled
as if they were running on virtual cores. Since partitioned
and global scheduling are generally incomparable, we do not
directly compare against [30] in this work.

Task preemption and migration are challenging in real-time
scheduling because of cache effects. Anderson et al. proposed
a cache-cognizant hierarchical scheduling method, based on
Pfair scheduling discipline, that minimizes L2 cache-misses
in multicore platforms [4] . Calandrino et al. proposed several
heuristics, based on G-EDF scheduling, that improves cache
performance of real-time applications [11]. Recently, Sarkar
et al. investigated migration of locked cache lines for task
migration under a global preemptive scheduling method [25].
Mancuso et al. proposed a cache management framework
that combines page coloring and cache-lockdown to minimize
cache interference in multicore platforms [19]. Because our
work focuses on main memory, these techniques complement
our work.

Interference in main memory is an important problem in
modern multicore platforms and various solutions were inves-
tigated to address the problem. One direction is to minimize
memory interference by proposing new hardware mechanisms.
Akesson et al. proposed the Predator memory controller design
that combines regulators and a credit based scheduler (arbiter)
to provide latency and bandwidth guarantees [1]. Paolieri et
al. also proposed a memory controller design, called AMC,
to provide performance guarantees but this work differs in
that it uses a round-robin based arbiter [21]. While valuable,
these works require modification in hardware, and are not

available in COTS components. Another direction is software-
based approaches that use OS schedulers to coordinate mem-
ory accesses in such a way to minimize interference. The
work presented in this paper falls into this category. One
closely related work is MemGuard [31] which provides per-
core memory bandwidth reservations for memory-performance
isolation. The main difference is that current work benefits
from the PREM task model and is based on a global scheduling
algorithm that allows task migration.

Apart from [30], several scheduling works based on PREM
or similar models have been published in recent years. The
most closely related work is [2], which similarly considers
global scheduling of PREM tasks. However, the model in [2]
is incomparable with the one in our current work: in [2], the
authors assume that the execution phase of each task must
complete before the task’s deadline, while the subsequent write
back phase is executed together with the memory phase of
some other task, possibly after the deadline. In contrast, in
this paper we argue that the write back memory phase of
the task should also complete by the deadline, since output
data requires timing guarantees. Furthermore, in [2] tasks are
scheduled non-preemptively to reduce required cache size. For
both reasons, we cannot provide a direct comparison with
[2]. [3] discusses global scheduling of PREM-like tasks on
scratchpad-based multicore systems; the work considers co-
scheduling a separate DMA component to perform transfers
from main memory to scratchpad and vice versa. In contrast,
as discussed in Section II-B, our work targets commercially-
available systems using cache memory; hence, the core itself
must be used to prefetch data into local memory.

Finally, since we consider tasks divided in phases sequen-
tially executed on virtually separate resources, our model has
similarities to the ones used in distributed real-time computing
approaches such as delay composition [15] and holistic anal-
ysis [20], [29]. However, to the best of our knowledge, there
is no extension to delay composition for globally scheduled
resources; such extension is not trivial, since the analysis
framework requires a fixed order of job executions on all
traversed resources. Our approach is similar to the general
holistic analysis framework in that we obtain the task’s end-
to-end response time by considering the response times of
individual phases; in fact, the technique used in Section IV-C
to reduce the interference pessimism is akin to adding a
separation (offset/jitter) of Re(e0) between phases executing
on the same resource (mcore memory cores). We do not
directly employ holistic analysis because again, to the best of
our knowledge, there is no published response time analysis
for global scheduling with offsets and jitters.

VII. CONCLUSIONS

Main memory is an increasingly important shared resource
in multicore based real-time systems. Traditional analysis
focusing solely on the CPU may work poorly, especially when
memory load is high, due to an increased worst-case stall time
when accessing main memory. In this work, we have proposed
a new memory-centric scheduling method based on the global
scheduling algorithm. The novelty of our approach is that it
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prioritizes accessing memory over local CPU execution at run-
time. We also have proposed a parametric schedulability anal-
ysis method, based on the idea of response time analysis on
the virtual cores. Our analysis allows multiple cores to access
memory concurrently, hence reduces analysis pessimism. The
evaluation shows that the proposed memory-centric scheduling
method can improve real-time task schedulability by almost a
factor of two, compared to a non memory-centric scheduling
approaches.

As future work, we plan to remove the assumption on the
number of phases of each task, and incorporate cache effects
in the schedulability analysis.
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