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Conformant Synthesis for Koopman
Operator Linearized Control Systems

Niklas Kochdumper, Stanley Bak

Abstract— One very promising approach for control-
ling nonlinear systems is Koopman operator linearization,
which approximates nonlinear dynamics with a higher-
dimensional linear system. However, since the resulting
Koopman linearized model only estimates the actual dy-
namics, one cannot provide any safety guarantees for the
resulting controllers. In this paper we propose a solution
to the safety-issue by constructing a Koopman linearized
model that is conformant with measurements from the
real system using a novel conformant synthesis algorithm
that combines trace conformance and reachset confor-
mance. The resulting conformant model can then be used
to construct controllers that are safe despite process noise
and measurements errors acting on the real system. We
demonstrate the superior performance of our conformant
synthesis approach compared to previous methods using
real data from an electric circuit and a robot manipulator,
and we apply our overall framework to safely control a
F1tenth racecar.

Index Terms— Conformant synthesis, Koopman opera-
tor, control systems, data-driven algorithms.

I. INTRODUCTION

WHILE controlling nonlinear systems is often challeng-
ing and computationally demanding, controller design

for linear systems is a well-studied problem for which many
efficient approaches exist [8], [10], [31], even for high-
dimensional systems. This motivates using Koopman operator
linearization for control, where the dynamic behavior of a
nonlinear system is approximated with a high-dimensional
linear system. While the Koopman framework has been suc-
cessfully applied for many control approaches including model
predictive control [19], tracking controllers [11], [33], and
linear-quadratic-regulators [5], those controllers are not able
to provide any safety guarantees due to the approximative
nature of the Koopman linearized model. We address this
issue with a novel conformant synthesis approach that adds
nondeterminism to the Koopman linearized model to make it
conformant with measurements from the real physical system.
To obtain a formally safe controller, we can then apply control
approaches for linear systems that provide safety guarantees
[12], [13], [29] for controller synthesis using the resulting
conformant model.
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A. Related Work

Koopman operator linearization is based on the Koopman
theorem [17], which states that every nonlinear dynamic
system can be equivalently represented by an infinite di-
mensional linear system. Thereby, the state variables of the
linear system are defined by so-called observable functions
or observables that represent nonlinear transformations of the
original system state. Since it is not possible to compute
with infinite dimensions, one in practice selects a finite set
of observables yielding an approximative linear system. Many
different methods for choosing suitable observables have been
proposed: For Carleman linearization [6] the observables are
defined by multi-variate monomials. A systematic way to
determine appropriate observables are random Fourier features
[9], whose usage is motivated by the Kernel trick. Moreover,
recent approaches also use neural networks as observables
[15], [34]. It is also possible to refine a given set of observables
based on their closedness under Lie-derivatives to obtain
a better approximation [28]. Once the observables are se-
lected, the system matrices of the Koopman linearized system
resulting in the best approximation of the original system
dynamics can be obtained by applying extended dynamic
mode decomposition [32] to measurements or simulations. The
Koopman framework is consequently also very well suited for
data-driven approaches since the corresponding model can be
directly identified from measurements without any need for
a symbolic description of the system dynamics in form of a
differential equation.

No matter how sophisticated a system model is, the model
will never exactly match the behavior of the real physical
system. To construct formally safe controllers we therefore
require over-approximative models that contain a certain non-
determinism that enables them to enclose all possible behav-
iors of the real system. The process of checking whether or
not a given model is over-approximative is called conformance
testing, and there exist two main categories of approaches: 1)
In trace conformance [1], [7] one aims to determine suitable
values for the nondeterminism of the model to obtain a system
trajectory that is identical with the recorded measurement
trace. 2) For reachset conformance [3], [27] one checks if the
recorded trace is contained in an inner-approximation of the
reachable set for the nondeterministic model. An extension
to conformance testing is conformant synthesis, where the
nondeterminism that is required to make the model conformant
is determined automatically. Up to now, conformant synthesis
approaches have been developed for linear systems [21],



2 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2022

nonlinear systems [3], and hybrid systems [16], all of which
are based on reachset conformance.

Some approaches aim to capture the uncertainty for Koop-
man linearized models by inferring probability distributions
over observable functions [14], [23]. Moreover, for Koopman
linearized models obtained via Carleman linearization it is
possible to compute bounds for the error between the exact
dynamics and the Koopman approximation [4], [20]. However,
these bounds are usually very conservative. In this paper we
present the first conformant synthesis approach for Koopman
operator linearized systems, which automatically constructs a
tight over-approximative model from measurements of the real
physical system using a combination of trace conformance and
reachset conformance.

B. Notation
In the remainder of this paper, we will use the following

notations: Sets are denoted by calligraphic letters, matrices
by uppercase letters, and vectors by lowercase letters. The
p-norm of a vector a ∈ Rn is denoted by ‖a‖p. Given a
matrix A ∈ Rn×m, A(i,·) represents the i-th matrix row, A(·,j)

the j-th column, and A(i,j) the j-th entry of matrix row i.
The concatenation of two matrices C and D is denoted by
[C D], and In ∈ Rn×n is the identity matrix. The symbol
0 represents an all-zero matrix of proper dimension, and the
empty matrix is denoted by [ ]. Given a scalar number x ∈
R, the floor operator bxc rounds to the next lower integer
and the signum function sign(x) returns the sign. Given a
set S ⊂ Rn, the operator volume(S) returns the volume
of the set and the linear map is M S = {M s | s ∈ S} for
M ∈ Rm×n. Given two sets S1,S2 ⊂ Rn, their Minkowski
sum is S1 ⊕ S2 = {s1 + s2 | s1 ∈ S1, s2 ∈ S2}. We further
introduce a zonotope Z ⊂ Rn defined by q generators as Z =
{c +

∑q
i=1G(·,i) αi |αi ∈ [−1, 1]} with c ∈ Rn, G ∈ Rn×q

and scalars αi, for which we use the shorthand Z = 〈c,G〉Z .
The zonotope order ρ = q/n represents an estimate for the
representation size.

II. PROBLEM FORMULATION

We consider arbitrary black-box systems with state x(t) ∈
Rn and input u(t) ∈ Rm, where t ∈ R≥0 is the time. A
measurement of the system state, which might be subject to a
measurement error, is denoted by x̂(t). A trace of the system
consists of a sequence of measurements x̂(t0), . . . , x̂(ts) that
are obtained when applying the piecewise constant sequence
of control inputs u1, . . . , us to the system. For simplicity,
we assume without loss of generality that the measurements
are conducted using a fixed sampling rate ∆t = ti−1 − ti,
i = 1, . . . , s. Given a list of traces, our goal is to construct
a conformant system model that explains all measurements.
To achieve this, we first identify a nominal model that
approximates the behavior of the black-box system using
Koopman operator linearization, which is described in Sec. III.
To make this model conformant with the measurements we
then add nondeterminism to it, where the required amount
of nondeterminism is automatically determined by our novel
conformant synthesis algorithm presented in Sec. IV. Several

Fig. 1: Schematic visualization of a conformant trajectory.

improvements for the algorithm are discussed in Sec. V, before
we finally present an extensive experimental evaluation in
Sec. VI.

III. SYSTEM IDENTIFICATION VIA KOOPMAN
OPERATOR LINEARIZATION

Koopman operator linearization introduces a new system
state y(t) = h(x(t)) = [h1(x(t)) . . . hr(x(t))]T , which is
defined by observable functions hj : Rn → R, j = 1, . . . , r
that represent nonlinear transformations of the original system
state x(t). The main idea behind this transformation is that
the complex nonlinear dynamic behavior of the original system
state x(t) can often be approximated well with a linear system
in the higher-dimensional observable space:

ẏ(t) = Ay(t) +B u(t)

x(t) ≈ C y(t),
(1)

where y(t0) = h(x(t0)). As described in Sec. I-A, there exist
many different approaches to select suitable observables h(x),
all of which can be combined with our proposed conformant
synthesis approach. Once the observables are fixed, the system
matrix A ∈ Rr×r, the input matrix B ∈ Rr×m, and the output
matrix C ∈ Rn×r in (1) resulting in the best approximation
of the original system behavior can be computed from the
recorded measurement traces by applying a combination of
extended dynamic mode decomposition [32] and dynamic
mode decomposition with inputs [26]. So overall the Koopman
framework generates linear system models that represent ac-
curate approximations of the original system behavior directly
from recorded measurement traces, and is therefore well-suited
for system identification.

IV. CONFORMANT SYNTHESIS

To construct a conformant model, we extend the Koopman
linearized system (1) by nondeterminism in form of a process
noise w(t) ∈ W and a measurement error v(t) ∈ V:

ẏ(t) = Ay(t) +B u(t) + w(t)

x(t) = C y(t) + v(t).
(2)

The goal of conformant synthesis is to determine minimal sets
W and V such that the conformant system (2) explains all
measurements. Considering a single trace for simplicity, this
corresponds to the following optimization problem:

min
W⊂Rr,V⊂Rn

µvolume(W) + (1− µ)volume(V) (3)
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subject to

y(ti+1) = y(ti) +

∫ ∆t

0

Ay(t) +B ui+1 + w(t) dt (3a)

x̂(tj) = C y(tj) + v(tj) (3b)

y(t0) = h
(
x̂(t0)− v(t0)

)
(3c)

∀τ ∈ [t0, ts] : w(τ) ∈ W ∧ v(τ) ∈ V (3d)

for i = 0, . . . , s− 1 and j = 0, . . . , s, where the user-defined
parameter µ ∈ [0, 1] can be used to control the relative size
of the resulting sets W and V . The constraint (3a) ensures
dynamic feasibility with the model (2), the constraint (3b)
connects the actual system state x(t) with the measured state
x̂(t) as visualized in Fig. 1, the constraint (3c) links the
original system state x(t) to the state of the Koopman operator
linearized system y(t), and the constraint (3d) ensures that
the process noise and measurement errors are contained in the
corresponding sets. The optimization problem (3) is in general
computationally infeasible to solve. We therefore apply several
simplifications, which finally enables us to obtain a feasible
and close-to-optimal solution for (3) efficiently using trace
conformance:

1) We restrict the sets W and V to be multi-dimensional
intervals.

2) We minimize the norms ‖w(t)‖1 and ‖v(t)‖1 instead of
minimizing the volume.

3) We restrict the functions w(t) and v(t) to be piecewise
constant.

4) We set the initial measurement error v(t0) = 0 to zero
to avoid the nonlinearity in the constraint (3c).

With these simplifications (3) becomes

min
w1,...,ws
v1,...,vs

s∑
k=1

µ ‖wk‖1 + (1− µ) ‖vk‖1 (4)

subject to

y(ti+1) = eA∆t y(ti)

+A−1
(
eA∆t − Ir

)
(B ui+1 + wi+1) (4a)

x̂(tj) = C y(tj) + vj (4b)

y(t0) = h
(
x̂(t0)

)
(4c)

for i = 0, . . . , s− 1 and j = 1, . . . , s. Note that with suitable
slack variables (4) can be formulated as a linear program
[30], and therefore be solved very efficiently. Moreover, if the
system matrix A is not invertible, we can utilize the power-
series of the exponential matrix yielding

A−1
(
eA∆t − Ir

)
=

∞∑
i=1

1

i !
A(i−1)∆ti.

For each measurement trace we obtain a point cloud of optimal
values w1, . . . , ws and v1, . . . , vs for the process noise and
measurement errors from (4) as shown in Fig. 2, which we
enclose with multi-dimensional intervals to obtain the sets W
and V . The setsW and V for multiple measurement traces are
finally obtained by computing the union of the intervals for
the single traces.
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Fig. 2: Enclosure of the point cloud for the measurement error ob-
tained during conformant synthesis of the electric circuit benchmark
with an interval (red), a zonotope (green), and a polytope (blue).

V. IMPROVEMENTS

We now presents several improvements to enhance the
performance of our conformant synthesis approach.

1) Trace Splitting: One issue we are facing is that the number
of measurements s in a trace is often very large in practice.
Since the number of variables for (4) is directly proportional to
the number of measurements, solving the linear program can
therefore be computationally demanding. To circumvent this
issue we divide each trace into smaller groups that consist of
d < s measurements only. We then solve (4) for each of these
groups, where we use the final state y(td) from the previous
group as the initial state y(t0) for the next group.

2) Reachset Conformance: After updating the model uncer-
tainty on several traces, many of the remaining traces will
already be conformant. This motivates the application of
reachset conformance to check if the model is already con-
formant with a trace, so that we only have to solve the linear
program (4) if the check fails. Because reachset conformance
is often much faster compared to trace conformance, this
significantly reduces the expected runtime for our algorithm.
Since the control inputs as well as the process noise are
constant during one time step, the reachable set can simply
be computed by evaluating (4a) in a set-based manner using
zonotopes:

R(ti+1) = eA∆tR(ti)⊕A−1
(
eA∆t − Ir

)
(B ui+1 +W),

where the initial set is R(t0) = 〈h(x̂(t0), [ ]〉Z and set oper-
ations on zonotopes are computed according to [18, Sec. I].
Since the Minkowski sum increases the number of zonotope
generators in each step, we have to repeatedly reduce the
zonotope order if we want to keep the computation time small.
While most zonotope order reduction methods compute outer-
approximations [18], we require an inner-approximation:

Proposition 1: (Order Reduction) Given a zonotope Z =
〈c,G〉Z ⊂ Rn and a desired zonotope order ρd ≥ 1/n, the
operation reduce(Z, ρd) ⊆ Z returns a zonotope with order
smaller than ρd that inner-approximates Z:

reduce(Z, ρd) =
〈
c, [G̃ g]

〉
Z
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with

G̃ = [G(·,o1) . . . G(·,oa)], g =

q∑
i=a+1

sign(G(1,oi))G(·,oi),

where o1, . . . , oq are the indices of the sorted generators

‖G(·,o1)‖2 ≥ · · · ≥ ‖G(·,oq)‖2

and a = bρd n− 1c is the number of unreduced generators.

Proof. We replace the zonotope

ZR =
〈
0, [G(·,oa+1) . . . G(·,oq)]

〉
Z

containing the reduced generators by a zonotope ZU = 〈0, g〉Z
consisting of a single generator g ∈ Rn. Since both vertices g
and −g of ZU are contained in ZR we have ZU ⊆ ZR since
zonotopes are convex, which proves that reduce(Z, ρd) ⊆
Z . The resulting zonotope has order ρ = (a+ 1)/n = bρdc ≤
ρd and therefore complies with the desired order.

Checking if a measurement x̂(ti) is contained in the reach-
able set CR(ti) ⊕ V represented by the Minkowski sum of
the zonotope R(ti) and the interval V requires linear program-
ming, which would be computationally too expensive for our
purpose. We therefore instead apply a sound but approximative
containment check using the following heuristic:

Proposition 2: (Point Containment) Given a zonotope Z =
〈c,G〉Z ⊂ Rn, an interval I ⊂ Rn, and a point p ∈ Rn, it
holds that (

p− p̃ ∈ I
)
⇒
(
p ∈ Z ⊕ I

)
,

where

p̃ = c+

q∑
i=1

sign
(
(p− c)TG(·,i)

)
G(·,i)

is an estimate for the point in Z that has the smallest distance
to p.

Proof. According to the definition of the Minkowski sum we
have

p = p− p̃︸ ︷︷ ︸
∈I

+ p̃︸︷︷︸
∈Z

∈
{
p− p̃︸ ︷︷ ︸
∈I

+ s1

∣∣ s1 ∈ Z
}

⊆
{
s1 + s2 | s1 ∈ Z, s2 ∈ I

}
= Z ⊕ I,

which proves the proposition.

If trace splitting is used, one can compute the reachable sets
for the single groups to check if a group is already conformant.

3) Set Representations: Using multi-dimensional intervals to
represent the sets W and V might yield very conservative
results, so that a natural idea is to utilize more expressive
set representations. The tightest possible convex enclosure
can be obtained by computing the convex hull of the point
clouds w1, . . . , ws and v1, . . . , vs, which yields polytopes for
W and V . However, convex hull algorithms have exponen-
tial complexity with respect to the system dimension [25,
Thm. 3.16], which often prevents their application in our
case since the observable space is usually high-dimensional.
An alternative that often yields a good trade-off between
accuracy and compuatation time are zonotopes, where a tight
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Fig. 3: Comparison of the reachable sets for selected measurement
traces corresponding to conformant models constructed using dif-
ferent conformant synthesis approaches, where the results for the
approach from [16] are taken from [16, Fig. 7] and the results for
the approach from [21] are taken from [21, Fig. 4].

enclosing zonotope for a point cloud can be computed using
the algorithm in [22, Sec. VI.B]. An example for the enclosure
of a point cloud with different set representations is shown in
Fig. 2.

VI. EXPERIMENTS

We now demonstrate the performance of our novel confor-
mant synthesis algorithm on several benchmark systems. In
particular, we consider a dataset from an electric circuit that
represents a LMC6484 lowpass filter consisting of 6 measure-
ment traces [16], a dataset from a 6 degree-of-freedom Schunk
LWA 4P robot arm consisting of 2055 measurement traces
[21], and a dataset from a F1tenth racecar [24] consisting of
41 measurement traces. The electric circuit has 3 states and
a single input, where the states are the output voltage and
two internal voltages, and the input is the input voltage to the
circuit. The robot arm has 12 states and 6 inputs, where the
states are the angles and angular velocities for each of the
6 joints, and the inputs are the torques of the joint motors.
The F1tenth car has 4 states and 2 inputs, where the states
are the x- and y-position of the cars center, the orientation of
the car, and the cars velocity, and the inputs are the desired
steering angle and the desired velocity. The sampling rate is
∆t = 8µs for the electric circuit, ∆t = 4ms for the robot arm,
and ∆t = 25ms for the F1tenth racecar. We implemented our
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Tab. 1: Comparison of the resulting conformant Koopman linearized models for different types of observables with respect to
the average relative simulation error for the nominal model, the average volume of the tightest interval enclosing the reachable
set for the conformant model, and the average computation time of conformant synthesis for one second of data. In addition,
the trade-off parameters µ used for conformant synthesis are listed.

Benchmark Random Fourier Features Neural Network Observables

µ avg. rel. sim. error avg. volume comp. time / s µ avg. rel. sim. error avg. volume comp. time / s

Electric Circuit 0.5 6.77% 8.79 · 10−3 2.06s 0.5 6.38% 1.01 · 10−2 1.95s

Robot Arm 0.5 5.08% 1.19 · 10−2 0.02s 0.9 6.91% 4.31 · 10−2 0.02s

F1tenth Racecar 0.5 6.53% 1.79 · 10−3 0.03s 0.5 6.42% 1.16 · 10−3 0.02s

conformant synthesis approach in MATLAB, and we use the
toolbox CORA [2] for reachability analysis. All computations
are carried out on a 2.9GHz quad-core i7 processor with 32GB
memory.

A. Different Types of Observables
As described earlier in Sec. I-A, there exist many differ-

ent methods to determine suitable observables for Koopman
operator linearization. To demonstrate that our conformant
synthesis algorithm works well for arbitrary types of ob-
servables, we compare its performance for random Fourier
feature observables [9] and neural network observables [15].
For fairness we use r = 100 observables, a group size of
d = 5 for trace splitting, as well as a desired zonotope
order of ρd = 5 in both cases, and we represent the sets
W and V by intervals. The corresponding results for the
different benchmark systems are summarized in Tab. 1. Both
Koopman linearized models achieve a similarly good accu-
racy, which can be deduced from the small relative error
between simulations of the nominal model and the recorded
measurement traces. Moreover, the consistently small volume
of the reachable set for the conformant models indicates that
our conformant synthesis algorithm performs equally well for
different types of observables. Finally, for all but the very high-
frequency sampled electric circuit benchmark, the computation
time of our conformant synthesis algorithm for one second
of data is smaller than one second, so that our algorithm is
actually real-time capable for most systems.

B. Comparison with other Approaches
We now compare our approach for conformant synthesis

with other state of the art methods. For fairness we consider
the original results published in the corresponding papers for
the other methods to avoid a biased evaluation due to badly
tuned algorithm parameters. In particular, this means that we
compare to the conformant synthesis algorithm for hybrid
systems [16] using the electric circuit benchmark, and to the
conformant synthesis algorithm for linear systems [21] using
the robot arm benchmark. For both benchmarks we use the
conformant model constructed with random Fourier features
for our approach. As shown in Fig. 3, for both benchmarks our
conformant synthesis algorithm yields a tighter reachable set
than previous methods, which can be attributed to the fact that
our approach constructs a more accurate conformant model.

C. Formally Safe Controller Synthesis
One of the main applications for our conformant synthe-

sis approach is the design of formally safe controllers. We
therefore now use the conformant model for the F1tenth car
corresponding to the random Fourier feature observables to
construct a safe controller for solving a typical reach-avoid
problem. In particular, we use a model predictive control ap-
proach similar to the one in [13], which directly optimizes over
reachable sets to determine the optimal control inputs. This
also highlights one of the biggest advantages of our Koopman-
based conformance approach: While reachability analysis for
nonlinear vehicle models is in general too slow to execute the
optimization over reachable sets required for model predictive
control during online application, reachability analysis for the
conformant linear Koopman model is fast enough for real-
time capability. In addition, for the linear Koopman model
one can exploit the superposition principal to pre-compute
the reachable set due to the process noise w(t) ∈ W offline,
which further accelerates the computations. For online control
we implemented a ROS node using Python, and we apply
the sequential least squares programming algorithm from the
SciPy package1 to solve the optimization problem for model
predictive control. Moreover, identically to the setup used to
obtain the F1tenth dataset, the x- and y-positions as well as the
orientation of the car are determined from lidar measurements
and the cars velocity is calculated based on the measured
motor speed. The results shown in Fig. 4 demonstrate that
the we can successfully control the car with the conformant
Koopman linearized model so that it safely reaches the goal
set while avoiding the obstacle.

VII. CONCLUSION

In this work we introduced the first conformant synthesis
approach for Koopman operator linearized control systems.
Our method addresses one of the biggest disadvantages of
the Koopman framework, which is the lack of safety guaran-
tees due to the approximative nature of the resulting linear
Koopman models. With the conformant Koopman models
constructed by our approach it is now possible to control
complex dynamical systems using efficient techniques for
linear systems in a formally safe manner, as we demonstrate on
the example of a F1tenth racecar. Finally, since our approach

1https://scipy.org/

https://scipy.org/
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Fig. 4: Position of the F1tenth racecar at times 0s, 4.9s, and 9.8s
during online application of model predictive control, where the goal
set is shown in green and the obstacle is shown in orange.

combines the precision of trace conformance with the com-
putational efficiency of reachset conformance, it is for many
systems faster than real-time while still being more accurate
than previous methods.
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