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Abstract. The surge of interest in applications of deep neural networks
has led to a surge of interest in verification methods for such architec-
tures. In summer 2020, the first international competition on neural net-
work verification was held. This paper presents and evaluates the main
optimizations used in the nnenum tool, which outperformed all other tools
in the ACAS Xu benchmark category, sometimes by orders of magnitude.
The method uses fast abstractions for speed, combined with refinement
through ReLU splitting to increase accuracy when properties cannot be
proven. Although the abstraction refinement process is a classic approach
in formal methods, directly applying it to the neural network verification
problem actually reduces performance, due to a cascade of overapprox-
mation error when using abstraction. This makes optimizations and their
systematic evaluation essential for high performance.
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1 Introduction

Deep neural networks are powerful machine learning methods that can provide
accurate approximations to functions learned from data. One downside of neural
networks is that they are often unexpectedly sensitive to small targeted changes
in the inputs. This is most well-known in the context of perception systems,
where changes that a human cannot see can sometimes cause the systems to
misclassify an image [13]. Such adversarial examples attacks [24] can also be
applied to decision-making networks, where the system can fail due to what
could essentially be sensor noise [15].

In order to apply neural networks to safety-critical and even mission-critical
systems, stronger assurances are usually desired. One approach to do this in-
volves developing algorithms to reason formally over the function computed by
a neural network. The open-loop neural network verification problem tries to
prove properties over the inputs and outputs of a network. For example, given
interval bounds on each input, can you prove the maximum output of the net-
work does not change?

The most studied version involves neural networks with ReLU activation
functions, for which many algorithms tools have been proposed. The biggest
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Fig. 1. At VNN-COMP 2020, the nnenum tool verified each ACAS Xu benchmark in
under 10 seconds. (image from competition report [16]).

problem with these methods is often scalability, where networks cannot be veri-
fied in a timely manner. Analysis speed also affects the size of networks that can
be analyzed in a reasonable amount of time. Speed improvements to a verification
algorithm will mean that analysis of larger networks becomes more feasible.

This last summer in July 2020, the first international competition on neural
network verification, VNN-COMP 2020, was held [16]. There were two categories
of benchmarks evaluated: (i) image classification benchmarks that have generally
larger numbers of inputs and network sizes, and (ii) control benchmarks which
have less inputs and are generally smaller. The second category consisted of 184
benchmarks taken from the well-studied ACAS Xu system [18].

The results from the control category are shown in the cactus plot in Figure 1.
The nnenum tool was the fastest for this category, sometimes by orders of mag-
nitude (note the y-axis is log scale). Although the comparison is imperfect—the
participants each ran their own tool on their own hardware—the performance
difference cannot be explained by hardware alone. Several new algorithmic op-
timizations were necessary to achieve nnenum’s performance.

This paper outlines and evaluates the main optimizations used in nnenum.
Although nnenum also performed well on the image classification category, we
focus our measurements in this paper on the ACAS Xu benchmarks, as a differ-
ent set of optimizations was used for the larger perception networks. The next
section provides a brief description of the high-level algorithm used for neural
network verification of ReLU networks and the ACAS Xu benchmarks. A pre-
sentation, evaluation, and tool implementation of several optimizations is the
main contribution of this work, and is presented in Section 3. The paper finishes
with related work and a conclusion.
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2 Overview

In this section, we provide an overview of the verification problem, benchmarks,
and algorithm used in our evaluation in the next section.

2.1 Verification Problem

Our goal in this work is to efficiently solve the open-loop neural network verifica-
tion problem. In this problem, we assume we are given a set defined with linear
constraints over the network inputs I and a second set of unsafe states defined
with linear constraints over the outputs U . The network we analyze consists of
fully connected layers with rectified linear unit (ReLU) activation functions, al-
though the method has also been extended to work with convolutional layers,
max pooling layers, and others [33,35]. ReLU activation functions are defined as
ReLU(x) = max(x, 0), so that the neural networks compute a piecewise linear
function. The verification problem is to find an input i ∈ I which when executed
on the neural network produces an unsafe output u ∈ U , or prove no such input
exists. The execution semantics of fully-connected neural networks is well-known
and reviewed in many papers [3], so we do not restate it here.

2.2 ACAS Xu Benchmarks

In this work, we focus our evaluation on the well-known ACAS Xu bench-
marks [18]. These benchmarks provide several open-loop specifications for neural
networks that are intended to compute a lossy compression of a large lookup ta-
ble containing actions to prevent collisions among aircraft [17]. Each of the 45
neural networks has 300 neurons arranged in six fully-connected layers with
ReLU activation functions. There are five inputs corresponding to the aircraft
states, and five outputs corresponding to possible commands of the ownship air-
craft to avoid collisions. Each property is defined using linear constraints over
the inputs and outputs, matching the problem description in Section 2.1. The
first four of these properties are applicable to all 45 networks, and we use these
180 benchmarks for our evaluation throughout this paper. In the original work
with Reluplex [18], analysis times for these properties ranged from seconds to
days, with some unsolved instances that presumably ran for days without pro-
ducing a verification result. The ACAS Xu benchmarks are thus a mix of easy
and difficult problems, some of which are SAT and some are UNSAT. Although the
networks are small compared with image classification neural networks, they are
similar enough to neural networks used in decision making and control to make
them good benchmarks for verification algorithms.

2.3 Set Representations

The basis of our implementation is a reachability algorithm [34] based on the
linear star set data structure [10], which we just call star sets in this paper.
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Star sets are way to represent a set of states in some Euclidean space Rn.
They are defined using two parts: (1) a half-space polytope (H-polytope) in
some m-dimensional space, and (2) an affine transformation that takes the m-
dimensional H-polytope to the n-dimensional space. Star sets are efficient for (i)
computing high-dimensional affine transformations of sets, (ii) taking intersec-
tions with arbitrary linear constraints and (iii) optimizing using linear program-
ming (LP). These are all the operations needed to analyze neural networks with
fully-connected ReLU layers [3].

The algorithm we describe in the next subsection also makes use of zonotope
overapproximations to improve efficiency. Zonotopes are a representation of a set
of states in some Euclidean space Rn that encode an affine transformation of a box
from some k-dimensional space. Zonotopes are efficient for affine transformations
and very fast for linear optimization using a simple loop, but unlike star sets
they cannot encode general intersections with linear constraints. Note that star
sets are also efficient for linear optimization, but this requires invoking an LP
solver so is often orders of magnitude slower than optimization with zonotopes.

2.4 Verification Algorithm Overview

We next provide a brief overview of the verification algorithm. A more complete
description of the problem and algorithm are provided in an earlier work [3],
where systematic analysis of optimization for exact analysis was performed. In
the next section we will continue this approach of systematically analyzing opti-
mizations, but instead for a modified version of the algorithm that uses abstrac-
tions to compute overapproximations of the set of possible outputs of a neural
network. When the abstract system fails to verify the property, refinement is
performed and the process repeats with a finer abstraction, all the way down to
exact analysis if necessary.

The algorithm first represents the input set I using both a star set and a
zonotope (called a prefilter zonotope in the earlier work). Each layer is then it-
erated over in the network, with an inner loop that iterates over each neuron in
the layer. To go from the ni values (dimensions) from one layer to the ni+1 val-
ues (dimensions) at the next layer, an affine transformation is performed on the
sets, defined by the ni+1 × ni weights matrix and ni+1 bias vector in the neural
network at layer i. At each neuron within a layer, the sets are optimized over
to check the lower and upper bound of the possible inputs to the neuron. If the
lower bound is greater than zero or the upper bound is less than zero—for which
we say the input or neuron is one-sided—then the nonlinear ReLU activation
function is equivalent to a linear transformation and can be directly performed
on the star set and zonotope. For efficiency, the optimization is first done using
the zonotope rather than the star set, which can sometimes prove the input is
one-sided without using LP. If the input is not one-sided, for exact analysis, the
set can be split in two along the boundary where the input to the neuron is equal
to zero, using an intersection operation. For the zonotope, since intersections are
not supported, the operation is generally ignored resulting in a strictly larger
set (an overapproximation), although some accuracy control can be performed
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through zonotope domain contraction. Zonotope domain contraction is the pro-
cess of reducing the size of the box domain in the zonotope definition, so that it
is a tighter overapproximation of the exact set represented by the star set. Since
the affine transformations in the star set and zonotope are identical, zonotope
contraction can be done by computing box bounds on the star set whenever an
intersection is taken. When the sets are split in two, the algorithm proceeds re-
cursively, performing the appropriate linear operation on the sets for the current
neuron and proceeding to the next one. In the worst case, if splitting is done
at every neuron, this can result in an exponential number of sets, which is not
surprising as exact analysis for ReLU neural networks is NP-complete [18]. In
practice, the problem is sometimes tractable, which means the choice of bench-
marks is essential to evaluate an algorithm’s practicality. This is a bit similar
to how SAT solving is an NP-complete problem, but annual competitions since
1992 have pushed the limits of what is achievable in practice [6].

In the abstraction refinement version of the algorithm developed here, rather
than immediately splitting the star set when neurons are not one-sided, we first
overapproximate the ReLU region using the best convex relaxation in the neu-
ron’s input-output plane, sometimes called the triangle relaxation [12], which
can be efficiently represented using a star set. This overapproximation is shown
later in Figure 3 (top-left), and has been formally described in other work [34].
Use overapproximation rather than splitting has the advantage of avoiding worst-
case exponential splitting, but also has trade offs. The overapproximation adds a
dimension to the domain of the star set as well as extra constraints, which makes
future optimizations using LP slightly slower computationally. Also, the result is
an overapproximation, which means that future neurons analyzed may look like
they split whereas in reality they are one-sided, leading to even more error that
takes even longer to analyze. Error can cascade through the network in this way
leading to what we call an error snowball. Further, once the set is propagated
through all the layers, it is possible that the output set intersects the unsafe set
U , whereas the real set does not; there can be spurious counter-examples due to
the overapproximation in the abstraction.

In the previous work with star sets [34], cases where the abstraction inter-
sected the unsafe set U produced a verification result of UNKNOWN. Here, we
instead propose to go back and perform a split on the first neuron where overap-
proximation was used—a refinement step. The process then proceeds recursively,
again trying overapproximation at each remaining neuron that is not one-sided
and then checking for intersection with the unsafe set U . If there is still an in-
tersection, refinement is performed again on a second neuron, and so on, until
either the property is proved, an unsafe counter-example is found, or no remain-
ing neurons exist where an overapproximation was done. Since the algorithm
eventually reverts to exact analysis, it is sound and complete. It also has the
potential to be faster, when abstractions can prove there is no intersection with
U . However, as will be shown in the next section, a direct implementation can
actually be slower in many cases.
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Fig. 2. The new zonotope domain contraction algorithm computes new box bounds by
finding points p1, p2, and then p3, requiring only three LPs instead of four (left). In the
best case, computing bounds with the new approach only requires two LPs, regardless
of the number of dimensions n, instead of 2n with the old approach (right).

3 Optimizations

We now present and evaluate several key optimizations that are essential to the
performance of nnenum. We run each optimization on all the 180 ACAS Xu
benchmarks described in the Section 2.2. We use a timeout of one minute for
each benchmark and report the number of timeouts encountered as well as the
total runtime. For lack of a better option, we count a timeout as one minute of
total runtime, but keep in mind that the number of timeouts should weigh much
more heavily when comparing approaches; some ACAS Xu benchmarks have
been known to run for hours or days in other work. All measurements in this
paper were done on a laptop running Ubuntu 20.04 with an Intel Xeon E-2176M
CPU running at 2.70GHz containing 32 GB RAM. Our implementation of the
algorithm is available online as part of the nnenum tool1, including Dockerfile
and scripts to run all the ACAS Xu benchmarks.

3.1 Zonotope Domain Contraction

As mentioned in the algorithm overview in Section 2, zonotopes are used to
provide quick outer approximation of the bounds of the possible inputs to each
neuron. If these are accurate, many neurons can be proven to be one-sided with-
out needing to do linear programming in the star sets, which is significantly
more efficient. For abstract analysis later, we will also consider using zonotopes,
so the tightness of the zonotope is even more important.

Although zonotopes do not support intersections when splitting sets, their
box domains can be reduced to contain the set after intersection which improves
accuracy and reduces runtime. The problem of determining the tightest box
domain can be solved using linear programming on the exact set represented by
the star set. The most direct algorithm is to minimize and maximize along every
input, so that a neural network with n inputs will require solving 2n LPs. In our

1 https://github.com/stanleybak/nnenum

https://github.com/stanleybak/nnenum
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earlier work on optimizing exact analysis [3], we compared this direct approach,
which we call Old LP here, with a Single Loop approach for zonotope domain
contraction. In the Single Loop method, a single constraint was analyzed to see
if it reduced the box bounds of the zonotope’s domain. This does not produce
tight box bounds, but it was shown to be faster overall as it did not require LP
solving.

Here we re-examine domain contraction using a few further optimizations.
First, rather than solving 2n LPs to determine box bounds, we leverage addi-
tional information available to the problem. Namely, we take advantage of the
box bounds on the zonotope domain that are available prior to taking the inter-
section. The problem becomes to determine if adding one additional constraint
to the star set’s domain (an H-polytope) changes its bounding box, given the
original bounding box.

Our new zonotope contraction approach, called New LP, uses LP to optimize
over the star set’s H-polytope with an optimization direction vector of all −1
values, to try to simultaneously find the lower bounds of all the variables in a
single LP. In the best case, this point will have a value equal to the minimum
value of each dimension in the old bounding box, and we can proceed to find
upper bounds in the same fashion but using a vector of all 1 values. If only some
of the variables achieved their earlier lower bound, the process repeats, setting
to 0 in the optimization direction vector all of the variables that matched their
earlier lower bound. To process stops when no new variables in the result get to
their earlier lower bound, after which each variable that did not achieve their
earlier lower bound is minimized individually using LP.

An example of this algorithm is shown in the 2-D case in Figure 2. In the
figure, the box domain is intersected with a linear constraint, so that the upper
grey region should be excluded from the resultant set. On the left side of the fig-
ure, the algorithm would first maximize in the direction of 〈−1,−1〉 (minimizing
the sum of x and y) finding point p1, which matches the previous bounding box,
so that we know that the lower bounds of both x and y are unchanged. Next, we
maximize 〈1, 1〉 finding point p2, which matches the old upper bound of x. The
next maximization direction is 〈0, 1〉, which gives point p3, which proves that
the upper bound of y should be reduced, because the vector we optimized over
only had a single non-zero entry. In this case, we found the box bounds using
three LPs, whereas the original approach needed four.

In the best case, the algorithm can reduce the number of LPs to solve in an
n-dimensional problem, corresponding to a neural network verification problem
with n inputs, from 2n to 2. Such as case is shown in Figure 2 on the right,
where one LP would first find point r and then a second LP would find point q,
which is sufficient to show the box bounds have not been updated due to the new
constraint. For this reason we expect the benefit to be greatest for this new zono-
tope domain contraction algorithm when the input space is high dimensional,
such as in image recognition adversarial example verification benchmarks. Even
in ACAS Xu, however, there are five inputs and so the savings can be beneficial.
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Table 1. Domain Contraction Optimizations with Exact analysis.

Optimization Timeouts Runtime [sec]

No Contraction 50 3471.2
Single Loop 32 2778.8
Old LP 44 3220.9
Old LP + Witnesses 31 2680.1
New LP 31 2743.8
New LP + Witnesses 28 2549.0

A second optimization we consider for zonotope domain contraction is to
track the witnesses of the box bounds. Whenever we compute box bounds, we
can store the witness points in the set that exhibit the lower and upper bounds.
When a new constraint is added, if the new constraint does not exclude the
witness point from the set, which can be checked with simple dot product, then
the bound for that variable/direction is unchanged. This witness approach can be
applied to both the old contraction algorithm (Old LP + Witnesses) and new
proposed contraction algorithm (New LP + Witnesses). For example, consider
again the right side of Figure 2. If p and r are the witness points exhibiting
the box bounds, then we can quickly check that the new constraint does not
eliminate p or r from the set. Thus, we can prove the box bounds have not
changed, without any need for LP solving.

The results for the various zonotope domain contraction options, in addition
to a No Contraction approach, are shown in Table 1. Both the newer algo-
rithm and tracking witnesses improve performance. Although the Single Loop

approach is faster than the Old LP method, using the New LP method, especially
when tracking witnesses is even faster. All zonotope contraction methods out-
perform No Contraction. For the remaining optimization in this paper, we use
zonotope domain contraction with the New LP + Witnesses approach.

3.2 Direct Abstraction Refinement

We next examine direct abstraction refinement approaches. As described earlier,
these algorithms first use an abstraction to try to prove the property by overap-
proximating all the ReLU functions when individual neurons are not one-sided.
If the property cannot be proven, the computation backtracks to the first ReLU
that was an overapproximation and the set is instead split. Each of the two
sets is then processed recursively, again trying overapproximations at the next
neuron which could split.

If the ith neuron in a layer has an input with lower bound li < 0 and
upper bound ui > 0, various overapproximations are possible for the output
of the neuron which do not require splitting. Figure 3 shows four possibilities,
where the input to the neuron is on the x axis and the output is on the y axis.
The triangle overapproximation (top-left) is the best convex relaxation on the
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Fig. 3. When the inputs to some neuron i are bounded between li and ui, many
overapproximations can provide efficient abstractions of the nonlinear ReLU activation
function, ReLU(x) = max(x, 0). In each plot, the x axis is the input to the neuron,
and the y axis is the output.

single neuron input-output plane and is possible to represent with star sets [34].
Although better linear overapproximations are possible by bounding multiple
neurons at once [28], it is unclear so far if this improves overall performance,
so we focus on the single neuron case in nnenum. Although the star set triangle
overapproximation approach, which we call Star, is the most accurate, it can
sometimes be slow as optimization over star sets uses linear programming. It
can be actually beneficial to use a less accurate zonotope abstraction, which can
compute bounds of subsequent neurons more quickly. With zonotopes, actually
multiple abstractions are possible, which can be parameterized by the slope of the
zonotope [29]. Three choices are shown in Figure 3 (top-right and bottom row).
While the best-area zonotope generally has less overapproximation error, all the
zonotopes are actually incomparable from a set perspective. Each zonotope type
has points in the neuron input-output plane that are excluded in one of the
other zonotope abstractions, and so none is better in all cases. The Zonotope

approach uses the best-area zonotope abstraction for each neuron that can split.

In addition to using individual abstractions, nnenum also makes use of two
new ideas in the context of neural network verification: (i) multi-round abstrac-
tions and (ii) multi-abstraction analysis within each round.

Multi-round analysis proceeds by first trying one abstraction and then trying
another one before proceeding to split. For example, multi-round analysis with
two rounds could first try to prove the property using the best-area zonotope
abstraction, which is fast but less accurate. If that does not succeed, analysis
would then try to use the triangle overapproximation with star sets, which is
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Table 2. Direct Abstraction Refinement Analysis.

Optimization Timeouts Runtime [sec]

Zonotope 29 3517.1
Star 64 4174.3
Zono-Star 63 4186.8
Three Rounds 65 4190.0

more accurate but slower. If that also fails, then splitting would occur and the
process would proceed recursively on the split sets.

Multi-abstraction within each round is a little bit similar to the use prefilter
zonotopes during exact analysis. There, the idea was to first use a quick abstrac-
tion to compute if neurons can split, and only if inputs cannot be proven to be
one-sided do we use the slower, more accurate star set to compute bounds. We
call this combined abstraction method Zono-Star. This process can be extended
to an arbitrary list of abstractions, and towards the problem of computing the
lower and upper bounds of each neuron rather than just rejecting splits. The ap-
proach works by using each abstraction to compute the lower and upper bounds
of the next neuron’s input, stopping if any of the abstractions shows it is one-
sided. Since all abstractions are overapproximations, even when splits cannot be
rejected we can still use the greatest lower bound and the least upper bound
from all of the abstractions. Then, for constructing the overapproximating zono-
topes or star sets for the next neuron, these tighter bounds are used for all of
the abstractions. For example, we could consider all three zonotope abstrac-
tions at the same time. Since zonotope analysis is quick, this multi-abstraction
method offers a way to improve accuracy with little cost. A similar concurrent
multi-abstraction approach has been used in the context of parallelotope bun-
dles [8] for reachability analysis of dynamical systems [9,20] where it was called
“all-for-one” analysis.

Multi-round and multi-abstraction can also be combined. For example, in
the first round could try to prove the property using just the best-area zonotope
abstraction, and if that fails a second round could use all three zonotopes to-
gether, and then if that fails we could do a third round with all three zonotopes
as well as the triangle overapproximation with star sets. This approach is called
Three Rounds.

The measurements for the various abstractions are shown in Table 2. From
the analysis, the Zonotope methods looks better than the more accurate abstrac-
tions, even with multi-round and multi-abstraction analysis. The main reason is
that the other three levels of abstraction have star sets that use LP solving to
determine bounds, which turns out to be a bottleneck.

However, even the Zonotope abstraction refinement method is slower than
the New LP + Witnesses exact analysis method described earlier in Section 3.1.
This would seem to imply that abstraction refinement is a losing strategy for
high-performance neural network verification, unless we can find further opti-
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mizations to improve the approach. In the next subsection, we discuss the cause
for this unintuitively poor performance, and propose and evaluate further opti-
mizations to the abstraction refinement algorithm.

3.3 Abstraction Refinement Improvements

In the worst case, the abstraction refinement approach will revert to exact analy-
sis. However, performance in these cases is much worse than directly doing exact
analysis, as time must be spent at each abstraction phase to propagate abstract
sets and check if the final sets are unsafe. Upon examining the performance of
various phases of the algorithm, it turned out that propagating abstract sets
can sometimes be very slow. The cause of this was determined to be the error
snowball effect described in Section 2.4. Basically, an overapproximation is less
accurate, and so it is more likely that neurons analyzed will look like they may
split, causing a further reduction in accuracy. The splitting processes adds vari-
ables to the LPs needed to compute neuron bounds using star sets, and adds
generators to the zonotope abstractions, slowing down analysis of neurons fur-
ther in the network. Worse, after all the slow computation completes, the set
at the end of the network has lots of error and very rarely can prove the safety
specification. The computation has taken a long time and its result was useless.
To speed up performance, then, we need methods that prevent error snowballs,
reduce their impact, or detect them before they get out of hand.

We consider different ways to adjust the computation time / error trade off
when using star sets. If we can increase the analysis speed for a slight reduction
in accuracy, this may reduce the computation time when error snowballs occur
during abstract analysis. The first method we look at to do this we call Quick
Star. Here, the bounds for each neuron are computed only using zonotopes, like
with a multi-abstraction round, but these bounds are also used to construct a
star set overapproximation. This star set is only used to check for intersection
with the unsafe set, rather than for computing the bounds on the neuron inputs.
Only a single LP is used at the end to check for intersection with the unsafe set,
as the bounds computations are all done with zonotopes. The approach we use
with Quick Star uses the Three Rounds abstraction which uses three zonotopes
in the final round to get the tightest bounds possible without LP.

A second way to speed up star set analysis with a slight accuracy reduction
deals with the bounds computation process. Rather than computing two bounds
for each neuron, we consider only computing a single bound in order to try to
prove the neuron is one-sided, and use the zonotope bounds for the other side if
this fails. The side to choose (lower or upper bound), is selected by leveraging a
quick concrete execution of the neural network. In this way, for example, we will
never compute the upper bound for a neuron’s input if the concrete execution
has a positive input value for that neuron, as the upper bound could not be
less than concrete input value. This method, which uses a single LP per bounds
computation, is a bit of a compromise between direct star set abstraction, which
use two LPs to compute the lower and upper bounds, and Quick Star, which
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uses zero LPs. We evaluate this approach using the combined zonotope-star
abstraction and refer to it as One Sided Zono-Star.

One way we investigate to try to prevent error snowballs, rather than just
reducing their effect, is called Execution-Guided Overapproximation (EGO). EGO
works by changing the order in which abstractions are constructed. Rather than
first trying abstract analysis and then splitting if the abstraction fails, EGO first
splits as much as possible essentially proceeding as if it were exact analysis.
Upon succeeding to verify one branch of the search space after many splits,
the method backtracks like a normal depth-first search, but now starts to try
abstract analysis. This continues further and further up the search tree, until
abstract analysis no longer succeeds in proving the property, causing the method
to again switch to exact analysis and repeat. Essentially, rather than starting
from an abstract system and performing refinement, EGO analysis starts with a
concrete set and iteratively constructs more and more abstract systems. This
avoids costly abstraction analysis near the root of the search tree that often
result in error snowballs. More details on EGO are available in a online report [1].
For the EGO method, we use the Zono-Star abstraction, as well as the Three

Rounds abstraction which we call EGO Three Rounds.

Instead of EGO, there are other methods we try to use to prevent and de-
tect error snowballs. One method, called Split Limit, tracks the number of
splits that occurred whenever an abstraction successfully verified a portion of the
search tree. When backtracking and continuing abstract analysis, if the number
of splits using zonotopes exceeds some factor multiplied by the previous number
of splits, this method directly splits without trying abstract analysis. The intu-
ition for this approach comes from the observation that error snowballs often
have a huge number of neurons that split, much more than previous success-
ful analysis. We analyze different multiplication factors in the context of the
Split Limit method. For example Split Limit 1.5 would mean that if the
last successfully verified abstraction had 10 neurons that split, and the current
zonotope-only abstraction has more than 15 splits, abstraction analysis with star
sets would not even be attempted.

A second idea to reduce the impact of error snowballs is to directly use
timeouts for the abstraction analysis (Abs Timeout). These methods again have
a parameter that we tune which is the number of seconds abstraction analysis
runs before it is stopped.

The third way to improve performance creates a threshold for when Split

Limit should be used. We noticed when the number of splits is very small in
successful abstract analysis, using a simple multiplicative factor may give up on
abstract analysis too quickly. For example, if an abstraction with two splits suc-
ceeds, having a Split Limit of 2 would reject any system with more than four
splits in zonotope analysis. In the Split Min methods, we enforce a minimum on
the number of splits before we consider the Split Limit multiplicative factor.
For example, we could set a Split Min threshold of 30, where any abstraction
where the zonotope analysis split on less than 30 neurons will always be analyzed
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Table 3. Optimized Abstraction Refinement Analysis.

Optimization Timeouts Runtime [sec]

Quick Star 43 3802.8
One Sided 26 2998.5
EGO 2 1469.2
EGO 3 Rounds 2 1467.1
Split Limit 1.1 31 3090.2
Split Limit 1.2 32 3288.4
Split Limit 1.3 31 3247.7
Split Limit 1.4 31 3215.4
Split Limit 1.5 28 3229.9
Split Limit 1.6 32 3291.1
Split Limit 1.7 30 3184.8
Abs Timeout 0.02 0 274.8
Abs Timeout 0.04 0 371.7
Abs Timeout 0.06 0 451.5
Abs Timeout 0.08 0 520.7
Abs Timeout 0.1 0 577.7
Split Min 10 3 1236.4
Split Min 20 0 485.5
Split Min 30 0 298.6
Split Min 40 0 224.7
Split Min 50 0 191.5
Split Min 60 0 178.4
Split Min 70 0 173.6
Split Min 80 0 175.7
Split Min 90 0 188.7

abstractly with star sets. Again the minimum value is a parameter that we tune
through measurements.

The result of each of the optimizations run on all the ACAS Xu benchmarks
is shown in Table 3. Using Quick Star reduced the number of timeouts from 63
with Zono-Star down to 43. The One Sided approach made a bigger difference,
reducing the number of timeouts from 63 with Zono-Star to 26. For the rest of
the optimizations we continue to use the one-sided optimization. EGO was even
faster, where analysis now only had 2 benchmarks that exceeded the one minute
timeout. The additional abstraction rounds in EGO 3 Rounds no longer slowed
the method down as with the direct abstraction refinement approaches from
Table 2. We noticed this was generally the case when there were few error snow-
ball cases, so we continue to use the three-round abstraction in the remaining
measurements.

Although EGO and Quick Star methods both improved performance by re-
ducing the effect of error snowballs, it was difficult to think of ways to further im-
prove their speed. The goal of the remaining three optimizations, Split Limit,
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Abs Timeout, and Split Min, was to be able to get closer to the accuracy of
using star set overapproximation without the large runtime.

Using Split Limit, we improve upon the Three Rounds result which had
65 timeouts, although the method is still slower than EGO. The method is not too
sensitive to the parameter used, and we use Split Limit 1.5 for the remaining
measurements.

Adding in Abs Timeout, we finally achieve a method where every benchmark
finishes within one minute (no timeouts occur). Generally, smaller values of the
abstraction timeout parameter seem to be faster. We used an Abs Timeout 0.04

when evaluating the Split Min parameter (we also tried 0.02 and 0.06, but they
was slightly slower when used with Split Min).

Finally, adding the Split Min optimization further reduces the total com-
putation time to run all the ACAS Xu benchmarks. The Split Min 70 method
analyzed all 180 benchmarks using a runtime sum of 173 seconds.

We also tried many optimization options individually that were not reported
in detail in the tables. For example only using Abs Timeout without Split

Limit was also fairly fast, but still had a few timeouts. Doing things like turning
off zonotope domain contraction also severely hurt performance of the overap-
proximation methods. Overall, the best performance we found was achieved using
a combination the presented optimizations, with Split Limit, Abs Timeout,
and Split Min used in combination to prevent error snowballs with star set
analysis.

4 Related Work

Many additional methods for verification of neural networks have been pro-
posed [21,38], including methods based on mixed integer-linear programming
(MILP) [22,32], symbolic interval propagation [37,36], SMT-based approaches
based on modifications to the Simplex linear programming algorithm [18,19],
and MILP methods with local search [11].

Linear star sets have been explored in the context of other problems. In par-
ticular, efficient high-dimensional reachability analysis of hybrid systems with
linear differential equations is possible with star sets [2,4], where the primary
operations needed are the same as in the neural network verification case: affine
transformation, intersection with linear constraints, and optimization. Other
names for essentially the same data structure as linear star sets include affine
forms [14], constrained zonotopes [27,23] and AH-Polytopes [26].

Other optimizations may provide further improvements to performance, such
as using the spurious region to guide refinement [40], similar to counter-example
guided abstraction refinement [7]. We did not find a way to use this in our
algorithm without hurting overall performance, although it may be an avenue
for further investigation.

Another critical choice in the algorithm is the ordering of neurons when per-
forming splitting. We tried several heuristic orderings within each layer, with
only minor impact on performance. In nnenum, we always visit the neurons layer
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by layer, but rearrange the order of neurons so that they are sorted in decreas-
ing order of their L∞ norm distance of the zonotope bounds estimates, which
only slightly outperforms just visiting the neurons in the original order. More
computationally advanced methods, such as those that track gradient informa-
tion [37], compute output sensitivity [39], perform dependency analysis [5] or
use information from LP shadow prices [25] could further improve efficiency.

In the future, we may also consider other abstractions such as symbolic inter-
vals [37,36] or using single upper and lower bounds (called DeepPoly [30]) which
could offer different accuracy / performance trade offs.

5 Conclusion

We presented an abstraction refinement algorithm for verification of neural net-
works based on the star set data structure. Importantly, we showed that several
optimizations are possible and necessary with the approach in order to create a
highly efficient algorithm—abstraction refinement is actually slower than directly
using exact analysis without the optimizations presented. While optimizing an
algorithm might be seen as an engineering problem, we believe such optimization
is necessary to guide the appropriate place to develop new theory. It is difficult
to really evaluate an algorithm and know which bottlenecks are worth improving
without an optimized implementation.

In this paper, we showed that the fully optimized version of nnenum verified
all 180 ACAS Xu benchmarks from properties 1 to 4 using a sum total runtime
of 178 seconds. During the VNN-COMP 2020 competition, the single ACAS
Xu benchmark consisting of property 2 and network 4-2 required 240 seconds
for ERAN [31] and 648 seconds for Venus [5], the two next fastest tools. The
performance of nnenum would not be possible without the methods presented in
this paper.
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28. Singh, G., Ganvir, R., Püschel, M., Vechev, M.: Beyond the single neuron con-
vex barrier for neural network certification. In: Advances in Neural Information
Processing Systems. pp. 15098–15109 (2019)
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