
Large-Scale Network Simulation Scalability and an FPGA-based
Network Simulator

Stanley Bak

Abstract

Network algorithms are deployed on large networks,
and proper algorithm evaluation is necessary to avoid
large-scale outages or performance bottlenecks.However,
evaluating a network algorithm in a simulator results in
significant run timeswhich scale poorly as we increase the
number of routers. An alternative network simulator de-
sign is desired which scales significantly better than cur-
rent simulators.

We evaluate the scalability of NS2, a popular network
simulator, by generating topologies of large networks and
show an O(N log(N)) scalability where N is the number
of routers. Then, we propose and implement a network
simulator based on reconfigurable hardware and FPGAs,
which is shown to scaleO(log(N)).However, through im-
plementation we demonstrate drawbacks of our FPGA-
simulator, particularly area constraints offered by cur-
rent generations of FPGAs.

1. Introduction

Network algorithms require significant work to eval-
uate. Several techniques exist to make this easier and to
be able to detect protocol problems before large-scale
deployment including network emulation and simula-
tion. Network emulation requires large amounts of re-
sources for large scale evaluation, and network simula-
tion also scales poorly.

Current network simulators exist which are capable
of simulating a given topology and flow scenario. How-
ever, the problem with some network simulators, such
as NS2 [1], is that they are single threaded, so large-
scale simulations take extremely long times to simulate.
The problem has been partially addressed by using par-
allel network simulation such as SSFNet [2]. In these
simulations, however, the bandwidth between simula-
tion nodes becomes the bottleneck leading the simu-
lation designer to require partitioning the network in
ways to make the simulation perform more efficiently.

Even multiple threads on a multi-core processor suf-
fer from communication issues since the parallel execu-
tion threads must share information.

This communication bottleneck can be addressed by
performing the entire simulation on custom hardware.
Field Programmable Gate Arrays (FPGAs) can imple-
ment custom hardware specifically designed to be a
network simulator. In this way, both the CPU exhaus-
tion and the communication limitation problems can be
solved. However, FPGAs can execute arbitrary hard-
ware, which makes programming them difficult. The
main contributions of this paper are

• A theoretic and empirical evaluation of the scal-
ability of NS2, the most popular network simula-
tor

• The design and implementation of a better-scaling,
massively-parallel FPGA-based Network Simula-
tor

• An evaluation of the FPGA Network simulator’s
scalability, and discussion of associated issues

This paper is divided into three main sections. First,
in Section 2 we describe our simulation scenario. The
scalability of any simulator depends on the parameters
of the simulation, thus care must be taken to ensure
the simulation parameters are realistic. Next, in Sec-
tion 3, The Network Simulator (NS2) is described and
evaluated. Expected scalability results are presented,
along with an evaluation using the generated topolo-
gies. Next, in Section 4, a design is presented for a
massively parallel network simulator and then imple-
mented on FPGA hardware. The new network simula-
tor is evaluated for scalability. As a result of implemen-
tation, a number of practical issues arise for simulation
on FPGAS, which are also discussed.

2. Simulation Scenario

Since the run time of a simulator depends on the
network being simulated, particular care is taken to
develop a realistic simulation scenario. The important



Figure 1: We evaluate the scalability of network simu-
lators using topologies generated by the Tiers topology
generator.

parts of the simulation are the network topology and
the packet traffic.

For our topology, we use the Tiers topology gen-
erator [3]. This program generates topologies with
three tiers, a wide area network which contains sev-
eral metropolitan area networks, which each contain
several local area networks. By modifying parameters
to the Tiers program, we are able to generate topolo-
gies with increasing numbers of routers. The Tiers gen-
erator also provides us with location information for
the routers. This location information is used to deter-
mine the delays for the links within our simulations,
with routers that are further away having higher de-
lays than routers which are close. Four sample gener-
ated topologies are shown in Figure 1.

We generate traffic between routers by having each
router chose a random destination router for which to
send data. Constant bandwidth flows are created 1 sec-
ond into the simulation and stopped 50 seconds after
the start of the simulation. The simulation ends after
55 seconds. The flows each send one packet every sec-
ond. This flow scenario is probably simpler compared
to that of a typical simulation. However, our intent is
to show the scalability of the simulator, not that com-
plex algorithms can be implemented on FGPA hard-
ware (which is known to be true). This fixed flow sce-
nario is also easier to reason about in terms of theoretic
scalability, as is done in later sections. By limiting our
router complexity in this way, we can more rapidly im-
plement and evaluate the FPGA network simulator, al-
though other algorithms such as TCP could potentially
be added within the same simulator design.

The end-to-end process of generating a topology and
running it through both simulators is shown in Fig-
ure 2. The topology is first generated by Tiers. We
then created a C++ program, t2n, to parse the Tiers

Figure 2: The process of generating and simulating a
network topology involves a number of steps.

topology, create random flows, and generate an NS2 tcl
script which can be directly fed into NS. The t2n pro-
gram also outputs two files, top.txt and flows.txt,
which describe the topology, link latencies, and flow
information. These files are fed into the the RouteGen
Java program that we developed, which outputs a num-
ber of VHDL source files. These VHDL source files are
then turned into bitstreams using the Xilinx ISE tool.

3. The Network Simulator (NS2)

The Network Simulator (NS2), is the most popu-
lar current network simulator. In order to demonstrate
the scalability of NS2, in Section 3.1 we examine the
program’s design and infer the scalability we expect.
Then in Section 3.2, we use the Tiers topology genera-
tor and generate increasingly large network topologies
and measure the performance obtained by NS2.

3.1. Expected Scalability

NS2 is a single-threaded network simulator that
maintains a priority queue of events. The earliest event
in the system is processed at each time step, potentially
generating more events that are put into the event
queue. For example, a packet traveling between routers
would receive an updated event time based on the de-
lay between the routers, and move to the next router.
The processing that occurs at the next router would be
pushed until further in the simulation.

Given this design of network simulator, we can pre-
dict the scalability of NS2. The computation time



scales proportionally to the number of events. The
number of events is a product of the number of flows
in the system and the number of hops per flow. In our
simulation scenario, each new router generates a new
flow, so the number of flows scales O(N). The number
of hops per flow also increases as we increase the num-
ber of routers, although at a slower rate. Since our net-
work is hierarchical, we expect the path length to scale
similar to that of a tree, or O(log(N)). Therefore, for
our simulation scenario the expected scalability is O(N
log(N)).

3.2. Measured Scalability

In order to verify our predicted scalability, we ran
several tests with NS2 using the topology and flow gen-
eration outlined in Section 2. The results are displayed
in Figure 3, and show a super-linear increase in the
computation time as we increase the number of routers.
We consider this a validation of our predicted scalabil-
ity result, although there are a few other factors that
may affect the run time of the simulation including the
effects of cache, and logging.

One factor that may affect simulation time as we
scale up is the amount of memory that is used. Smaller
simulations will result in more cache hits and there-
fore may receive an associated speedup. Here, even
through the number of events still scales O(N log(N)),
the events get processed at different rates depending on
the simulation size. We do not measure the effects of
caching on our simulations, although we consider them
to be small. If we used even larger topologies, where the
disk would have to be used to store memory, we pre-
dict the effects may be more significant.

Another factor that may affect simulation time is
logging. For this reason we chose to only log data on
a single edge router which receives packets from a sin-
gle other router. In this way, the amount of data logged
is minimal, and does not increase for larger topologies.
Therefore, the effects of logging only add a constant
overhead to the simulations, and do not contribute to
the scalability.

4. FPGA Network Simulator

To improve the scalability of network simulation,
we develop a network simulator targeted at repro-
grammable logic on an FPGA instead of at an exe-
cutable for a processor. By developing on this platform,
we are able to take advantage of massive fine-grained
parallelism offered by hardware programming and FP-
GAs. However, we must switch from an event-based
design like that of NS2 to a design more suited for par-

Figure 3: The measured scalability of the NS2 network
simulator matches the predicted O(N log(N)) pattern.
The simulation time is in seconds.

allel execution. The proposed network simulator design
is presented in Section 4.1. Then, the network simula-
tor is evaluated in Section 4.2. Finally, some drawbacks
of FPGA network simulation are discussed in Section
4.3.

4.1. FPGA Network Simulator Design

In order to construct a network simulator on an
FPGA, we first create a computational model which we
can design our simulator in and can be mapped to an
FPGA. We use specific FPGA elements in order to con-
struct our simplified model in order to maximize par-
allelism (and therefore performance). Particularly, we
notice that for tasks that require more than a few reg-
isters of memory, a block ram on FPGA must be ac-
cessed. Typically, FPGAs have 100-200 block rams on
the chip which each have on the order of tens of kilo-
bytes of memory. Each of these can be accessed in par-
allel in a single clock cycle. With each of these block
rams, we associate one computational element (router).

These computational elements share a global clock,
and can push data (packets) onto other computational
elements. In order to limit one computational element
pushing data into another one at a time (for serial pro-
cessing and storage), a mutex hardware block is used.
To maintain coordination, a global scheduler receives
ready signals from each computational element, and
will set the proceed signal to true when all computa-
tional elements are ready. For debugging and analysis,
we also include a serial port output module that can
be associated with a single router. A logical block out-
line of the simulator with three routers present is shown
in Figure 4. Currently, constant bandwidth computa-
tional elements are used to do our evaluation. How-



Figure 4: Here, the logical outline of our FPGA-based
network simulator contains three routers.

Figure 5: A trace comparison between the output
of NS2(top) and our FPGA-based network simula-
tor(bottom) demonstrates simulation correctness.

ever, in the future these could be replaced by TCP or
other computational elements.

4.2. FPGA Network Simulator Evaluation

The FPGA network simulator is evaluated for both
correctness, that the result obtained matches the result
from NS2, and scalability, in terms of simulation time
versus number of routers.

4.2.1. Correctness The correctness of the network
simulator is evaluated by comparing the output of the
NS2 simulator with the FPGA network simulator for
simple topologies. One trace comparison is shown in
Figure 5, and the simulators have matching results. The
NS2 simulator packet arrival times are slightly shifted
because NS2 models delays at the routers and not just
link latencies. The FPGA simulator currently does not
model these effects, although this can be added in the
future.

4.2.2. Scalability Our FPGA-based network simu-
lator has a different design than NS2. Although the
number of events scales like NS2 O(N log(N)), each

Figure 6: We ran topologies of various sizes in our
FPGA network simulator to evaluate scalability.

additional router results in an additional parallel com-
puting unit. Since N routers means N parallel computa-
tion elements, we expect an O(log(N)) scalability re-
sult, assuming each computation element receives an
equal share of computation. This assumption may not
be valid, however, if the computation is not spread
evenly throughout the network that we are simulat-
ing. This is a particular concern since we expect the
core routers to be processing more traffic than edge
routers. Nonetheless, adding a router and flow to the
network will not always increase the computation at
the core routers, which would result in a scalability of
O(N). Since our simulation scenario is somewhere be-
tween these two extremes, we expect the scalability to
lie between an lower bound of Ω(log(N)) and an up-
per bound of O(N).

We ran ever-larger topologies within our FPGA net-
work simulator, and measured the scalability. The re-
sults are shown in Figure 6. The scalability empirically
appears to be closer to the lower bound of Ω(log(N)),
and demonstrates a large constant computation time.
This constant comes from the majority of the compu-
tation time occurring when no traffic is present in the
network (the simulation is sparse), and is discussed fur-
ther in Section 4.3.

Run-time scalability, however, does not tell the
whole story in terms of the time to perform a simu-
lation. We address two other concerns of end-to-end
simulation time, the critical path of the gener-
ated hardware, and the time it takes to perform the
hardware generation.

Although the scalability of the number of clock cy-
cles was evaluated, the duration of each clock cycle may
change among the various simulations. The duration of
a clock cycle depends on the critical path of the hard-
ware, which may vary among simulation scenarios. We



recorded the critical path of the generated hardware
which determines the minimum clock cycle that can be
used in conjunction with the simulation. We used the
Xilinx ML505 Platform [4] as the target FPGA. The
results are presented in Table 1, and does not show
an increasing trend with larger simulations. This can
be explained because, although the amount of inter-
connect between modules increases with larger simula-
tions, the length of the interconnect does not. There is
some slight variation in the critical path because the
hardware generation process uses heuristic algorithms
such as simulated annealing, which may result in dif-
ferent hardware implementations between runs.

The hardware generation time is a greater concern
since it consumes the majority of the end-to-end time
required to perform a simulation. This process is the
equivalent of compiling the simulator into hardware
code. To do this we use Xilinx’s 10.1 ISE software with
service pack 3, running on on an Intel Core2 Quad CPU
system at 2.4 GHz with 4 gigabytes of RAM and Win-
dows Vista 32-bit. We used the default settings for syn-
thesis which perform some analysis on the generated
bitstream and provides a balanced area/execution-time
trade off. The amount of time for hardware genera-
tion is shown in Table 1, and unfortunately does ap-
pear to increase for larger simulations. However, no-
tice that this time only depends on the topology, and
is independent of length of the simulation. Therefore,
for long-running simulations with the same topology,
this time remains constant. Additionally, by running
the simulation on multiple FPGAS as we suggest Sec-
tion 4.3, this process could be done in parallel for each
FPGA, bounding the generation time.

4.3. FPGA Network Simulator Drawbacks

We describe three drawbacks of FPGA-based net-
work simulation, including discrete/continuous time,
sparse/dense simulations, and FPGA area constraints.

NS2 uses a continuous time scenario where time is
represented by a floating-point value. Our FPGA Simu-
lator, on the other hand, uses discrete time where there
is a minimum time step. This is concerning because our
FPGA Simulator may not be able to simulate the same
things that NS2 can simulate. Particularly, if the de-
lay is less than the minimum discrete interval, we can
not accurately model the network. Decreasing the dis-
crete interval can help in this matter, however it will
increase the number of computation steps and there-
fore adversely affect simulation time.

Our simulator is also best suited for dense simula-
tions with many events happening concurrently. If the
simulation involves a small number of events, an event-

based simulator such as NS2 is likely to perform well.
The FPGA simulator will spend most of its time skip-
ping eventless states. This happens to some extent in
the simulations in this paper, where there are some pe-
riods of time (at the beginning of every second when
traffic is generated), when lots of events occur but then
after all packets arrive at their destinations many steps
are skipped. This could be somewhat reduced by a de-
sign that can skip multiple discrete steps at once. This
would involve changing the global coordinator in our
design to a more intelligent version that would take
in a “next event” time from each computational ele-
ment.

Lastly, our medium-scale simulations use up a sig-
nificant portion of FGPA area which limits applicabil-
ity towards large-scale simulation. The limited number
of concurrent BRAMs available on an FPGA could be
overcome by sharing a single memory between differ-
ent routers, although this would result in more limited
memory constraints for each router, and would increase
simulation time as mutex contention would undoubt-
edly rise. A more serious concern is the slice utiliza-
tion on FPGAs. As shown in Table 1, the slice uti-
lization approaches exhaustion of our Xilinx ML505
FPGA Platform as the simulations get larger. This can
be overcome slightly by getting a larger FPGA which
contains more slices. However, for even larger simula-
tion we believe multiple FPGAs could coordinate on
a single simulation. While the only present way to do
this is manually partitioning the hardware program,
we believe a more general framework could be appli-
cable to multi-FGPA computation. The area required
appears to scale linearly with the number of routers,
which means that a simulation of an AS which contains
500 routers likely be achievable using less than 10 FP-
GAs. This sort of scalability is not the case with NS2’s
design, where the single thread of execution does not
gain performance increases from the presence of multi-
ple processor cores.

5. Conclusions

Network simulators must scale in order to properly
evaluate large-scale effects of algorithms. By generat-
ing network topologies and flow scenarios, we were able
to evaluate the scalability of both NS2, and a new net-
work simulator targeted for FPGA execution. We ver-
ified that as the number of routers increases, NS scales
O(N log(N)), while our FPGA-based network simula-
tor design is closer to O(log(N)). Additionally, by im-
plementing our network simulator on an FPGA, we
were able to show which key challenges remain before
FPGAs become a viable option for network simula-



FPGA-based Network Simulator Scalability
Routers Clock Cycles Critical Path HW Generation Time % Slices
3 2946440 5.179ns 3:34 6
10 3217646 4.994ns 5:33 18
18 3364044 5.266ns 8:05 31
33 3670920 5.262ns 12:52 56
48 3918438 5.299ns 19:01 80

Table 1: The scalability of our FPGA simulator is shown in terms of clock cycles, critical path, hardware generation
time, and area (slices).
tion, particularly, overcoming the limitations of recon-
figurable area. Nonetheless, we have shown that doing
network simulation on an FPGA is possible, and our
proposed design is scalable.

References

[1] I. S. Institute, “The network simulator - ns-2,”
www.isi.edu/ nsnam/ ns/, 2008.

[2] S. R. Network, “Scalable simulation framework,”
www.ssfnet.org/ homePage.html, 2002.

[3] I. S. Institute, “The network simulator ns-2: Topology
generation,” www.isi.edu/ nsnam/ ns/ ns-topogen.html,
2008.

[4] Xilinx, “Virtex-5 lxt fpga ml505 evaluation platform,”
www.xilinx.com/ products/ devkits/ HW-V5-ML505-
UNI-G.htm, 2008.


